Suppr超能文献

用于医疗机器人技术的图像处理跨学科方法。

Interdisciplinary approaches to image processing for medical robotics.

作者信息

Chen Ludan, Wu Shiwen, Leung Stephen C H

机构信息

Armed Police General Hospital Clinical College, Anhui Medical University, Hefei, Anhui, China.

Department of Engineering, The University of HongKong, Hong Kong, China.

出版信息

Front Med (Lausanne). 2025 Jun 2;12:1564678. doi: 10.3389/fmed.2025.1564678. eCollection 2025.

Abstract

INTRODUCTION

The advancement of medical robotic systems highlights the critical need for precise and high-quality visual data, particularly in low-quality imaging scenarios. This study explores the interdisciplinary physics underlying image fusion and analysis, addressing challenges such as integrating complementary features, handling dynamic range variations, and suppressing noise in real-world medical contexts.

METHODS

We introduce the Multi-Scale Feature Adaptive Fusion Network (MFAFN) and the Dynamic Feature Refinement Strategy (DFRS), which leverage principles from computational and experimental physics to enhance imaging techniques. MFAFN applies multi-scale feature extraction, attention-based alignment, and adaptive fusion to improve spatial and spectral integration while preserving crucial details. Complementing this, DFRS employs saliency-based weighting, context-aware mechanisms, and dynamic normalization to refine feature importance and mitigate inconsistencies.

RESULTS

This interdisciplinary approach bridges computational physics, non-linear systems, and technological development, delivering significant improvements in fusion quality metrics such as spatial consistency, edge retention, and noise suppression.

DISCUSSION

Our findings contribute to advancing medical robotics by integrating novel physical principles into imaging methodologies, supporting sustainable innovations in healthcare technology.

摘要

引言

医疗机器人系统的发展凸显了对精确且高质量视觉数据的迫切需求,尤其是在低质量成像场景中。本研究探讨了图像融合与分析背后的跨学科物理学,解决了诸如整合互补特征、处理动态范围变化以及在现实世界医疗环境中抑制噪声等挑战。

方法

我们引入了多尺度特征自适应融合网络(MFAFN)和动态特征细化策略(DFRS),它们利用计算物理学和实验物理学原理来增强成像技术。MFAFN应用多尺度特征提取、基于注意力的对齐和自适应融合,以在保留关键细节的同时改善空间和光谱整合。作为补充,DFRS采用基于显著性的加权、上下文感知机制和动态归一化来细化特征重要性并减轻不一致性。

结果

这种跨学科方法将计算物理学、非线性系统和技术发展联系起来,在诸如空间一致性、边缘保留和噪声抑制等融合质量指标方面取得了显著改进。

讨论

我们的研究结果通过将新颖的物理原理整合到成像方法中,为推进医疗机器人技术做出了贡献,支持了医疗保健技术的可持续创新。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f21f/12171190/c28304e09fed/fmed-12-1564678-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验