重新审视半监督医学图像分割:基于方差缩减的视角

Rethinking Semi-Supervised Medical Image Segmentation: A Variance-Reduction Perspective.

作者信息

You Chenyu, Dai Weicheng, Min Yifei, Liu Fenglin, Clifton David A, Zhou S Kevin, Staib Lawrence, Duncan James S

机构信息

Yale University.

University of Oxford.

出版信息

Adv Neural Inf Process Syst. 2023 Dec;36:9984-10021.

DOI:
Abstract

For medical image segmentation, contrastive learning is the dominant practice to improve the quality of visual representations by contrasting semantically similar and dissimilar pairs of samples. This is enabled by the observation that without accessing ground truth labels, negative examples with truly dissimilar anatomical features, if sampled, can significantly improve the performance. In reality, however, these samples may come from similar anatomical regions and the models may struggle to distinguish the minority tail-class samples, making the tail classes more prone to misclassification, both of which typically lead to model collapse. In this paper, we propose ARCO, a semi-supervised contrastive learning (CL) framework with stratified group theory for medical image segmentation. In particular, we first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks with extremely limited labels. Furthermore, we theoretically prove these sampling techniques are universal in variance reduction. Finally, we experimentally validate our approaches on eight benchmarks, ., five 2D/3D medical and three semantic segmentation datasets, with different label settings, and our methods consistently outperform state-of-the-art semi-supervised methods. Additionally, we augment the CL frameworks with these sampling techniques and demonstrate significant gains over previous methods. We believe our work is an important step towards semi-supervised medical image segmentation by quantifying the limitation of current self-supervision objectives for accomplishing such challenging safety-critical tasks.

摘要

对于医学图像分割而言,对比学习是一种主流方法,通过对比语义相似和不相似的样本对来提高视觉表征的质量。之所以能够如此,是基于这样一种观察:在不获取真实标签的情况下,如果对具有真正不同解剖特征的负样本进行采样,能够显著提高性能。然而在实际中,这些样本可能来自相似的解剖区域,并且模型可能难以区分少数的尾部类别样本,这使得尾部类别更容易被误分类,这两种情况通常都会导致模型崩溃。在本文中,我们提出了ARCO,这是一种用于医学图像分割的带有分层群论的半监督对比学习(CL)框架。具体而言,我们首先通过方差缩减估计的概念提出构建ARCO,并表明某些方差缩减技术在标签极其有限的像素/体素级分割任务中特别有益。此外,我们从理论上证明了这些采样技术在方差缩减方面具有通用性。最后,我们在八个基准数据集上进行了实验验证,即五个2D/3D医学数据集和三个语义分割数据集,这些数据集具有不同的标签设置,并且我们的方法始终优于当前的半监督方法。此外,我们用这些采样技术增强了CL框架,并证明相较于之前的方法有显著提升。我们相信,通过量化当前自监督目标在完成此类具有挑战性的安全关键任务方面的局限性,我们的工作是迈向半监督医学图像分割的重要一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索