Yan Zhaoqi, Chang Xing, Liu Zhiming, Liu Ruxiu, Du Xiufan
Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Graduate School, Beijing, China.
The Third Hospital of Nanchang, Nanchang People's Hospital, Department of Rehabilitation Medicine, Nanchang, Jiangxi, China.
Front Endocrinol (Lausanne). 2025 Jun 2;16:1492082. doi: 10.3389/fendo.2025.1492082. eCollection 2025.
OBJECTIVE: This study aims to explore the associations between various obesity and lipid-related indicators in patients with diabetes or prediabetes. Specifically, the indicators examined include the triglyceride-glucose index (TyG), along with its derived metrics: TyG-BMI, TyG-WHtR, TyG-WWI, TyG-WC, lipid accumulation product (LAP), visceral adiposity index (VAI), and abdominal obesity index (ABSI), resulting in a total of eight indicators. METHODS: This study utilizes data from the NHANES conducted from 1999 to 2018, analyzing a cohort of 4,058 patients diagnosed with diabetes/prediabetes. We utilized multivariable Cox regression models to evaluate the impact of these indicators on both all-cause and cardiovascular mortality rates. Additionally, we compared the predictive performance of eight machine learning (ML) algorithms regarding mortality risk and used the SHAP method to clarify the significance of obesity and lipid-related indicators in mortality prediction. RESULTS: The results of the multivariable Cox regression analysis reveal significant associations between TyG, TyG-WWI, and ABSI with all-cause mortality among patients with diabetes/prediabetes. Compared to baseline levels, the HR for TyG in the fourth quartile (Q4) was 1.49, while for TyG-WWI (Q4), the HR was 1.52. Furthermore, ABSI was associated with increased all-cause mortality risk in groups Q3 and Q4, presenting risk ratios of 1.80 and 1.68, respectively. Notably, TyG (Q4) was also significantly associated with cardiovascular mortality risk, with an HR of 1.98. RCS analysis indicated a linear trend between TyG, TyG-WWI, and all-cause mortality, whereas ABSI displayed a non-linear trend. Among the ML algorithms evaluated, the XGBoost model exhibited the strongest predictive capability. The SHAP analysis indicated that the indicators with the greatest impact on all-cause mortality in patients with diabetes/prediabetes were ranked as follows: TyG > ABSI > TyG-WWI. Furthermore, sex-based subgroup analysis indicated that VAI was positively associated with cardiovascular mortality in male patients with diabetes/prediabetes, exhibiting a linear trend. CONCLUSION: TyG, TyG-WWI, ABSI, and VAI are closely linked to mortality risk in diabetes/prediabetes patients. Among these, TyG is significantly associated with both all-cause and cardiovascular mortality, showing superior predictive capability. We recommend long-term monitoring of these indicators and their inclusion in management strategies to effectively inform diabetes/prediabetes patients about their mortality risks.
目的:本研究旨在探讨糖尿病或糖尿病前期患者各种肥胖与脂质相关指标之间的关联。具体而言,所检测的指标包括甘油三酯-葡萄糖指数(TyG)及其衍生指标:TyG-BMI、TyG-WHtR、TyG-WWI、TyG-WC、脂质蓄积产物(LAP)、内脏脂肪指数(VAI)和腹部肥胖指数(ABSI),共计八个指标。 方法:本研究利用1999年至2018年美国国家健康与营养检查调查(NHANES)的数据,分析了4058例诊断为糖尿病/糖尿病前期的患者队列。我们使用多变量Cox回归模型来评估这些指标对全因死亡率和心血管死亡率的影响。此外,我们比较了八种机器学习(ML)算法对死亡风险的预测性能,并使用SHAP方法来阐明肥胖和脂质相关指标在死亡率预测中的重要性。 结果:多变量Cox回归分析结果显示,TyG、TyG-WWI和ABSI与糖尿病/糖尿病前期患者的全因死亡率之间存在显著关联。与基线水平相比,第四四分位数(Q4)的TyG的风险比(HR)为1.49,而TyG-WWI(Q4)的HR为1.52。此外,ABSI与Q3和Q4组的全因死亡风险增加相关,风险比分别为1.80和1.68。值得注意的是,TyG(Q4)也与心血管死亡风险显著相关,HR为1.98。限制性立方样条(RCS)分析表明,TyG、TyG-WWI与全因死亡率之间呈线性趋势,而ABSI呈非线性趋势。在所评估的ML算法中,XGBoost模型表现出最强的预测能力。SHAP分析表明,对糖尿病/糖尿病前期患者全因死亡率影响最大的指标排名如下:TyG>ABSI>TyG-WWI。此外,基于性别的亚组分析表明,VAI与糖尿病/糖尿病前期男性患者的心血管死亡率呈正相关,呈线性趋势。 结论:TyG、TyG-WWI、ABSI和VAI与糖尿病/糖尿病前期患者的死亡风险密切相关。其中,TyG与全因死亡率和心血管死亡率均显著相关,具有卓越的预测能力。我们建议长期监测这些指标,并将其纳入管理策略,以便有效地告知糖尿病/糖尿病前期患者其死亡风险。
Beijing Da Xue Xue Bao Yi Xue Ban. 2025-6-18
Front Endocrinol (Lausanne). 2025-6-4
Front Endocrinol (Lausanne). 2025-6-4
Front Endocrinol (Lausanne). 2023
JAMA. 2023-4-11
Biosensors (Basel). 2022-11-11