Suppr超能文献

通过高浓度LiSCN-聚碳酸亚乙酯固体聚合物电解质中的离子网络增强电荷传输。

Enhanced Charge Transport through Ion Networks in Highly Concentrated LiSCN-Polyethylene Carbonate Solid Polymer Electrolytes.

作者信息

Kumbhakar Kajal, Palchowdhury Sourav, Pham Thuy Duong, Shin Seoeun, Chun So Yeon, Shim Joong Won, Lee Kyung-Koo, Cho Minhaeng, Kwak Kyungwon

机构信息

Center for Molecular Spectroscopy and Dynamics Institute for Basic Science (IBS) Seoul 02841 Republic of Korea.

Faculty of Biotechnology, Chemistry and Environmental Engineering Phenikaa University Hanoi 10000 Vietnam.

出版信息

Small Sci. 2025 Jan 25;5(6):2400653. doi: 10.1002/smsc.202400653. eCollection 2025 Jun.

Abstract

Challenging the preference for bulky anions due to low binding energy with Li ion, the lithium thiocyanate-polyethylene carbonate (LiSCN-PEC) solid polymer electrolyte (SPE) demonstrates higher ionic conductivities (3.16 × 10 S cm) at polymer-in-salt concentration (100 mol%) compared to those with lithium bis(fluorosulfonyl)imide (LiFSI, 1.01 × 10 S cm) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI, 1.72 × 10 S cm). Through the careful selection of PEC and LiSCN as components of SPE, the carbonyl stretching of PEC and the SCN stretching band as vibrational reporters provide detailed structural insights into the Li ion transport channel. Spectroscopic investigations reveal that enhanced ion aggregation alters the solvation structure around the Li and diminishes the interaction between Li and polymer (PEC) with increasing LiSCN concentrations, promoting faster segmental motion as a major transport mechanism. However, the transition observed from subionic to superionic behavior in the Walden plot indicates the onset of segmental motion decoupled charge transport pathway. The SCN vibrational spectrum elucidates the evolution from a Li-SCN-Li type chain-like structure to a Li > SCN < Li type extended ion network with increasing LiSCN concentration, revealing that the ion network provides an alternative channel for Li ion transfer at higher concentrations, enhancing conductivity.

摘要

硫氰酸锂-聚碳酸乙烯酯(LiSCN-PEC)固体聚合物电解质(SPE)对锂离子具有较低的结合能,这挑战了人们对大体积阴离子的偏好。与双(氟磺酰)亚胺锂(LiFSI,1.01×10⁻⁴ S cm⁻¹)和双(三氟甲烷磺酰)亚胺锂(LiTFSI,1.72×10⁻⁴ S cm⁻¹)相比,在盐包聚合物浓度(100 mol%)下,LiSCN-PEC固体聚合物电解质表现出更高的离子电导率(3.16×10⁻⁴ S cm⁻¹)。通过精心选择PEC和LiSCN作为SPE的组分,PEC的羰基伸缩振动和作为振动报告基团的SCN伸缩带为锂离子传输通道提供了详细的结构见解。光谱研究表明,随着LiSCN浓度的增加,增强的离子聚集改变了Li周围的溶剂化结构,减少了Li与聚合物(PEC)之间的相互作用,促进了更快的链段运动,这是主要的传输机制。然而,在瓦尔登图中观察到从亚离子行为到超离子行为的转变,表明链段运动与电荷传输途径开始解耦。SCN振动光谱阐明了随着LiSCN浓度的增加,从Li-SCN-Li型链状结构到Li>SCN<Li型扩展离子网络的演变,揭示了离子网络在较高浓度下为锂离子转移提供了一条替代通道,提高了电导率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bde/12168596/6c4bd8b5a2bd/SMSC-5-2400653-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验