Suppr超能文献

基于运动表型的儿童心血管疾病风险概况:一项纵向队列研究。

Childhood cardiovascular disease risk profiles based on movement phenotypes:a longitudinal cohort study.

作者信息

Yli-Piipari Sami, Park Junhyuk, Yun Sanga, Deng Yangyang, Niemistö Donna, Kolunsarka Iiris, Huhtiniemi Mikko, Gråstén Arto, Jaakkola Timo

机构信息

Department of Kinesiology, 217 Ramsey Center, University of Georgia, 330 River Road, Athens, GA, 30602, USA.

Department of Kinesiology, University of Georgia, Athens, 219 Ramsey Center, 330 River Road, GA, 30602, USA.

出版信息

Eur J Pediatr. 2025 Jun 19;184(7):428. doi: 10.1007/s00431-025-06269-4.

Abstract

Cardiovascular disease (CVD) remains a significant global health concern, with many risk factors emerging in adolescence. This period is critical for prevention, as physical and behavioral patterns established during these years often persist into adulthood. Movement phenotypes, encompassing motor competence, physical capacity, and physical activity behaviours, are linked to cardiometabolic health as low competence and fitness levels in youth are associated with poor body composition and increased CVD risk. This longitudinal study aimed to (1) identify latent clusters of adolescents' movement phenotype-related CVD risk factors and (2) examine the stability of these profiles over four years. Latent profile and transition analysis were used to identify movement phenotype profiles and transitions of cluster membership across time among 1,147 adolescents (M: 11.27 ± .32). A four-cluster solution was identified as the most suitable. Profile 1 (23%) had the lowest motor competence, cardiovascular and muscular fitness, and moderate-to-vigorous physical activity (MVPA), along with the highest standardized body mass index (BMIz). Profile 2 (20%), predominantly girls, had below-average motor competence, cardiovascular and muscular fitness. The largest group, Profile 3 (36%), showed healthy indicators, with above-average values across all variables. Profile 4 (20%) had the highest levels of motor competence, cardiovascular and muscular fitness, and MVPA, as well as healthy BMIz (-2 ≤ BMIz ≤ 1). Cluster memberships remained remarkably stable over four years, except for a notable transition of over 20% from Profile 4 to 3. Conclusion: This study identifies distinct adolescent movement patterns associated with CVD risk and demonstrates how these change over time. The findings support the development of targeted interventions and early preventive strategies to support long-term cardiovascular health in adulthood. What is Known - What is New • Childhood movement phenotypes, i.e., motor competence, physical capacity, and behaviors, were highly stable over four years of adolescence, with nearly 50% of participants displaying elevated cardiovascular disease risk factors. • Additionally, 25% of our sample belonged to a cluster characterized by the poorest cardiovascular disease risk profile, marked by low motor competence, poor cardiovascular and muscle fitness, and low levels of moderate-to-vigorous physical activity. Most participants in this cluster also exhibited unhealthy body composition.

摘要

心血管疾病(CVD)仍然是一个重大的全球健康问题,许多风险因素在青少年时期就已出现。这一时期对于预防至关重要,因为这些年建立的身体和行为模式往往会持续到成年期。运动表型包括运动能力、身体能力和身体活动行为,与心脏代谢健康相关,因为青少年运动能力和健康水平较低与身体成分不佳及心血管疾病风险增加有关。这项纵向研究旨在:(1)识别青少年运动表型相关心血管疾病风险因素的潜在集群;(2)研究这些概况在四年间的稳定性。采用潜在概况和转换分析来识别1147名青少年(平均年龄11.27±0.32岁)的运动表型概况以及集群成员随时间的转换情况。确定四集群解决方案最为合适。概况1(23%)运动能力、心血管和肌肉健康水平最低,中等到剧烈身体活动(MVPA)水平中等,标准化体重指数(BMIz)最高。概况2(20%)主要为女孩,运动能力、心血管和肌肉健康水平低于平均水平。最大的群体概况3(36%)显示出健康指标,所有变量值均高于平均水平。概况4(20%)运动能力、心血管和肌肉健康水平以及MVPA水平最高,BMIz也处于健康范围(-2≤BMIz≤1)。除了从概况4到概况3有超过20%的显著转换外,集群成员在四年间保持显著稳定。结论:本研究识别出与心血管疾病风险相关的不同青少年运动模式,并展示了这些模式如何随时间变化。研究结果支持制定有针对性的干预措施和早期预防策略,以支持成年期的长期心血管健康。已知信息 - 新发现 • 儿童运动表型,即运动能力、身体能力和行为,在青春期四年间高度稳定,近50%的参与者表现出心血管疾病风险因素升高。 • 此外,我们样本的25%属于一个以最差心血管疾病风险概况为特征的集群,其特点是运动能力低、心血管和肌肉健康差以及中等到剧烈身体活动水平低。该集群中的大多数参与者还表现出不健康的身体成分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be49/12176961/e5a321c30c3b/431_2025_6269_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验