Luo Ziwei, Gustafsson Fredrik, Zhao Zheng, Sjölund Jens, Schön Thomas
Department of Information Technology, Uppsala University, Uppsala, Sweden.
Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
Philos Trans A Math Phys Eng Sci. 2025 Jun 19;383(2299):20240358. doi: 10.1098/rsta.2024.0358.
Diffusion models (DMs) have achieved remarkable progress in generative modelling, particularly in enhancing image quality to conform to human preferences. Recently, these models have also been applied to low-level computer vision for photo-realistic image restoration (IR) in tasks such as image denoising, deblurring and dehazing. In this review, we introduce key constructions in DMs and survey contemporary techniques that make use of DMs in solving general IR tasks. We also point out the main challenges and limitations of existing diffusion-based IR frameworks and provide potential directions for future work.This article is part of the theme issue 'Generative modelling meets Bayesian inference: a new paradigm for inverse problems'.
扩散模型(DMs)在生成建模方面取得了显著进展,尤其是在提高图像质量以符合人类偏好方面。最近,这些模型也被应用于低级计算机视觉,用于图像去噪、去模糊和去雾等任务中的逼真图像恢复(IR)。在这篇综述中,我们介绍了扩散模型的关键结构,并概述了在解决一般图像恢复任务中使用扩散模型的当代技术。我们还指出了现有基于扩散的图像恢复框架的主要挑战和局限性,并为未来的工作提供了潜在的方向。本文是主题为“生成建模与贝叶斯推理相遇:反问题的新范式”的一部分。