Suppr超能文献

用于图像恢复的扩散模型驯服:综述

Taming diffusion models for image restoration: a review.

作者信息

Luo Ziwei, Gustafsson Fredrik, Zhao Zheng, Sjölund Jens, Schön Thomas

机构信息

Department of Information Technology, Uppsala University, Uppsala, Sweden.

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.

出版信息

Philos Trans A Math Phys Eng Sci. 2025 Jun 19;383(2299):20240358. doi: 10.1098/rsta.2024.0358.

Abstract

Diffusion models (DMs) have achieved remarkable progress in generative modelling, particularly in enhancing image quality to conform to human preferences. Recently, these models have also been applied to low-level computer vision for photo-realistic image restoration (IR) in tasks such as image denoising, deblurring and dehazing. In this review, we introduce key constructions in DMs and survey contemporary techniques that make use of DMs in solving general IR tasks. We also point out the main challenges and limitations of existing diffusion-based IR frameworks and provide potential directions for future work.This article is part of the theme issue 'Generative modelling meets Bayesian inference: a new paradigm for inverse problems'.

摘要

扩散模型(DMs)在生成建模方面取得了显著进展,尤其是在提高图像质量以符合人类偏好方面。最近,这些模型也被应用于低级计算机视觉,用于图像去噪、去模糊和去雾等任务中的逼真图像恢复(IR)。在这篇综述中,我们介绍了扩散模型的关键结构,并概述了在解决一般图像恢复任务中使用扩散模型的当代技术。我们还指出了现有基于扩散的图像恢复框架的主要挑战和局限性,并为未来的工作提供了潜在的方向。本文是主题为“生成建模与贝叶斯推理相遇:反问题的新范式”的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f2/12201591/67b5eb718b12/rsta.2024.0358.f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验