Franzese Giulio, Michiardi Pietro
Data Science, EURECOM, Biot, France.
Philos Trans A Math Phys Eng Sci. 2025 Jun 19;383(2299):20240322. doi: 10.1098/rsta.2024.0322.
Diffusion models have recently emerged as a powerful class of generative models, achieving state-of-the-art performance in various domains such as image and audio synthesis. While most existing work focuses on finite-dimensional data, there is growing interest in extending diffusion models to infinite-dimensional function spaces. This survey provides a comprehensive overview of the theoretical foundations and practical applications of diffusion models in infinite dimensions. We review the necessary background on stochastic differential equations in Hilbert spaces, and then discuss different approaches to define generative models rooted in such formalism. Finally, we survey recent applications of infinite-dimensional diffusion models in areas such as generative modelling for function spaces, conditional generation of functional data and solving inverse problems. Throughout the survey, we highlight the connections between different approaches and discuss open problems and future research directions.This article is part of the theme issue 'Generative modelling meets Bayesian inference: a new paradigm for inverse problems'.
扩散模型最近已成为一类强大的生成模型,在图像和音频合成等各个领域取得了领先的性能。虽然大多数现有工作都集中在有限维数据上,但将扩散模型扩展到无限维函数空间的兴趣与日俱增。本综述全面概述了扩散模型在无限维中的理论基础和实际应用。我们回顾了希尔伯特空间中随机微分方程的必要背景,然后讨论了基于这种形式主义定义生成模型的不同方法。最后,我们综述了无限维扩散模型在诸如函数空间的生成建模、功能数据的条件生成以及解决反问题等领域的最新应用。在整个综述中,我们强调了不同方法之间的联系,并讨论了开放问题和未来的研究方向。本文是主题为“生成建模与贝叶斯推理相遇:反问题的新范式”的一部分。