Suppr超能文献

物理信息深度生成建模的变分推理入门

A primer on variational inference for physics-informed deep generative modelling.

作者信息

Glyn-Davies Alex, Vadeboncoeur Arnaud, Akyildiz O Deniz, Kazlauskaite Ieva, Girolami Mark

机构信息

Department of Engineering, University of Cambridge, Cambridge, Cambridgeshire, UK.

Department of Mathematics, Imperial College London, London, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2025 Jun 19;383(2299):20240324. doi: 10.1098/rsta.2024.0324.

Abstract

Variational inference (VI) is a computationally efficient and scalable methodology for approximate Bayesian inference. It strikes a balance between accuracy of uncertainty quantification and practical tractability. It excels at generative modelling and inversion tasks due to its built-in Bayesian regularization and flexibility, essential qualities for physics-related problems. For such problems, the underlying physical model determines the dependence between variables of interest, which in turn will require a tailored derivation for the central VI learning objective. Furthermore, in many physical inference applications, this structure has rich meaning and is essential for accurately capturing the dynamics of interest. In this paper, we provide an accessible and thorough technical introduction to VI for forward and inverse problems, guiding the reader through standard derivations of the VI framework and how it can best be realized through deep learning. We then review and unify recent literature exemplifying the flexibility allowed by VI. This paper is designed for a general scientific audience looking to solve physics-based problems with an emphasis on uncertainty quantification.This article is part of the theme issue 'Generative modelling meets Bayesian inference: a new paradigm for inverse problems'.

摘要

变分推断(VI)是一种用于近似贝叶斯推断的计算高效且可扩展的方法。它在不确定性量化的准确性和实际可处理性之间取得了平衡。由于其内置的贝叶斯正则化和灵活性,这对于与物理相关的问题来说是至关重要的特性,它在生成建模和反演任务方面表现出色。对于此类问题,基础物理模型决定了感兴趣变量之间的依赖关系,这反过来又需要针对变分推断的核心学习目标进行定制推导。此外,在许多物理推断应用中,这种结构具有丰富的意义,对于准确捕捉感兴趣的动力学至关重要。在本文中,我们为正向和反向问题的变分推断提供了一个易于理解且全面的技术介绍,引导读者了解变分推断框架的标准推导以及如何通过深度学习最好地实现它。然后,我们回顾并统一了近期的文献,这些文献例证了变分推断所允许的灵活性。本文是为希望解决基于物理的问题且侧重于不确定性量化的一般科学读者群体而撰写的。本文是主题为“生成建模与贝叶斯推断相遇:反问题的新范式”的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a9d/12177527/cc70bf2d9f28/rsta.2024.0324.f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验