Suppr超能文献

人类视觉中的数字盲视。

Number blindness in human vision.

作者信息

Negen James

机构信息

Psychology Department, Liverpool John Moores University, Liverpool, UK.

出版信息

Atten Percept Psychophys. 2025 Aug;87(6):1939-1947. doi: 10.3758/s13414-025-03113-7. Epub 2025 Jun 19.

Abstract

There is an ongoing controversy over whether human vision first estimates area and number, deriving our sense of density via division, or if it first estimates area and density, deriving our sense of number via multiplication. If number and area are both primary independent dimensions of visual perception then we should observe cross-magnitude influence between them in a simple choice task, especially if that influence would improve performance and this is explicitly explained to the participants. In contrast, here we show that human vision exhibits a specific kind of number blindness: performance on an area-choice task (which of these rectangles is larger?) is not improved by the addition of a perfectly correlated number signal (the larger one always has more dots on it) that creates equivalent density - even when explanations, reminders, and accurate feedback are given to the participants. This replicated across two experiments (N = 82, 122) with slightly different stimuli. Control analyses with brightness in Experiment 1 indicate that this is not a general resistance to the predicted cross-magnitude influence. This indicates that density, not number, is the primary independent perceptual dimension in human vision.

摘要

关于人类视觉是首先估计面积和数量,通过除法得出我们的密度感,还是首先估计面积和密度,通过乘法得出我们的数量感,目前仍存在争议。如果数量和面积都是视觉感知的主要独立维度,那么在一个简单的选择任务中,我们应该会观察到它们之间的交叉量级影响,尤其是如果这种影响能够提高表现,并且向参与者明确解释这一点。相比之下,我们在此表明人类视觉表现出一种特定类型的数字盲:在面积选择任务(这些矩形中哪个更大?)中,即使向参与者提供解释、提醒和准确反馈,添加一个产生等效密度的完全相关数字信号(较大的矩形上总是有更多的点)也不会提高表现。这在两个使用略有不同刺激的实验(N = 82, 122)中得到了重复。实验1中对亮度的对照分析表明,这并非对预测的交叉量级影响的普遍抵制。这表明在人类视觉中,密度而非数量是主要的独立感知维度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ba4/12331800/1a4e0005b22a/13414_2025_3113_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验