Suppr超能文献

增强整合共识策略的可靠性,以推动使用公开可用对接程序的基于对接的筛选活动。

Enhancing the Reliability of Integrated Consensus Strategies to Boost Docking-Based Screening Campaigns Using Publicly Available Docking Programs.

作者信息

Scardino Valeria, Galarce M Justina, Mignone M Emilia, Cavasotto Claudio N

机构信息

Computational Drug Design and Biomedical Informatics Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, Pilar, Buenos Aires, Argentina.

Austral Institute for Applied Artificial Intelligence, Universidad Austral, Pilar, Buenos Aires, Argentina.

出版信息

Mol Inform. 2025 Jun;44(5-6):e2445. doi: 10.1002/minf.2445.

Abstract

The use of docking-based virtual screening is today an established critical component within the drug discovery pipeline. In the context where the performance of molecular docking has been found to depend on the protein target and the program, consensus docking has been found to be a valuable approach to enhance the performance of high-throughput docking (HTD). We present and evaluate an integrated pose and ranking consensus approach that combines the advantages of pose consensus and the exponential consensus ranking (ECR) approach, using only publicly available docking programs (rDock, DOCK 6, Auto Dock 4, PLANTS, and Vina). Based on a thorough analysis performed to assess the optimal combination of matching poses and ECR thresholds, using a benchmarking set of 50 protein targets of diverse families and different property-matched ligand/decoy libraries, this enhanced pose/ranking consensus approach displayed a notably superior performance than the individual docking programs, and the ECR. This approach was also evaluated in HTD campaigns using larger libraries (∼1.1 million molecules) on six targets, thus obtaining an average improvement of the ECR of about 40%. We thus may say that this pose/ranking consensus methodology can be confidently used in prospective HTD campaigns using free-available docking programs.

摘要

基于对接的虚拟筛选如今已成为药物研发流程中一个既定的关键组成部分。在发现分子对接性能取决于蛋白质靶点和程序的背景下,人们发现共识对接是一种提高高通量对接(HTD)性能的有价值方法。我们提出并评估了一种综合的构象和排名共识方法,该方法结合了构象共识和指数共识排名(ECR)方法的优点,仅使用公开可用的对接程序(rDock、DOCK 6、Auto Dock 4、PLANTS和Vina)。基于对50个不同家族的蛋白质靶点以及不同性质匹配的配体/诱饵库的基准数据集进行的全面分析,以评估匹配构象和ECR阈值的最佳组合,这种增强的构象/排名共识方法表现出比单个对接程序和ECR显著更优的性能。该方法还在针对六个靶点使用更大库(约110万个分子)的HTD活动中进行了评估,从而使ECR平均提高了约40%。因此可以说,这种构象/排名共识方法可以放心地用于使用免费对接程序的前瞻性HTD活动。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验