Suppr超能文献

百草枯除草剂在硼掺杂金刚石电极上的阳极氧化:各种影响及降解机制的比较评估

Anodic oxidation of paraquat herbicide on BDD electrode: comparative evaluation of variable effects and degradation mechanisms.

作者信息

Rabaaoui Nejmeddine, Ben Hamadi Naoufel, Cherif Mourad, Guesmi Ahlem, Abd El-Fattah Wesam, Naïli Houcine

机构信息

Laboratory Physical-Chemistry of the Solid State, Chemistry Department, Faculty of Sciences of Sfax, University of Sfax BP 1171 3000 Sfax Tunisia

Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) P.O. Box 5701 Riyadh 11432 Saudi Arabia.

出版信息

RSC Adv. 2025 Jun 19;15(24):19146-19157. doi: 10.1039/d5ra02763b. eCollection 2025 Jun 4.

Abstract

This work investigates the electrochemical degradation of paraquat (30 mg L) in aqueous medium using a boron-doped diamond (BDD) anode, with a graphite cathode. The influence of operational variables including the effect of the anode material, current density, type of supporting electrolyte, and initial pH was systematically examined. BDD electrodes exhibited the most efficient performance, achieving COD and TOC removal rates of 99% and 98.6%, respectively, under optimal conditions (15 mA cm, pH = 3, 50 mmol per L NaSO). Degradation followed pseudo-first-order kinetics ( = 3.14 × 10 s). While faradaic efficiency peaked at 70.14%, energy demand increased to 66 kWh m over time. Analysis of reaction intermediates revealed the formation of aromatic and carboxylic acid by-products, which were tracked to elucidate a complete mineralization pathway. These findings demonstrate the potential of BDD driven electrochemical oxidation as a promising and sustainable technique for the treatment of persistent organic contaminants in water systems.

摘要

本研究使用掺硼金刚石(BDD)阳极和石墨阴极,对水溶液中百草枯(30 mg/L)的电化学降解进行了研究。系统考察了包括阳极材料、电流密度、支持电解质类型和初始pH值等操作变量的影响。BDD电极表现出最高的效率,在最佳条件(15 mA/cm²,pH = 3,50 mmol/L Na₂SO₄)下,COD和TOC去除率分别达到99%和98.6%。降解遵循准一级动力学(k = 3.14 × 10⁻³ s⁻¹)。虽然法拉第效率峰值为70.14%,但随着时间的推移,能量需求增加到66 kWh/m³。对反应中间体的分析揭示了芳香族和羧酸副产物的形成,通过追踪这些副产物以阐明完整的矿化途径。这些研究结果表明,BDD驱动的电化学氧化作为一种有前景的可持续技术,在处理水系统中持久性有机污染物方面具有潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/12177883/643480cb9308/d5ra02763b-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验