Kashiri Leah, Choga Wonderful T, Musasa Tinashe, Nziramasanga Pasipanodya, Gutsire Rutendo B, Zijenah Lynn S, Mukarati Norman L, Gaseitsiwe Simani, Moyo Sikhulile, Chin'ombe Nyasha
Medical Microbiology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe.
Department of Medical Sciences, Botswana Harvard Health Partnership, Gaborone, Botswana.
Front Immunol. 2025 Jun 5;16:1589083. doi: 10.3389/fimmu.2025.1589083. eCollection 2025.
The complex (MAC)-comprising , , and-is an emerging group of opportunistic pathogens responsible for significant morbidity and mortality, particularly in immunocompromised individuals. Despite this growing burden, no vaccines currently provide cross-species protection. In silico vaccine design offers a rapid, cost-effective strategy to identify immunogenic epitopes and assemble multi-epitope constructs with optimized safety and efficacy. Accordingly, we aimed to develop a candidate multi-epitope vaccine (MEV) targeting conserved antigens across multiple MAC species.
From a genomic survey of nontuberculous mycobacteria (NTM) in Zimbabwe, we assembled complete genomes for (MCOL), (MAV), and (MINT). Using both local and global reference datasets, we screened the conserved immunodominant proteins 85A, 85B, and 85C for high-affinity T-helper lymphocyte (THL) epitopes. Promising epitopes were further evaluated for antigenicity, immunogenicity, physicochemical stability, and population coverage.
Epitope mapping across the nine target proteins yielded 82 THL epitopes predicted to bind 13 MHC class II (DRB*) alleles, ensuring broad coverage within Zimbabwean and pan-African populations. Clustering analyses consolidated 26 unique epitopes into 11 consensus peptides, 65.4% of which derived from the 85B proteins. immune simulations predicted robust humoral and cellular responses, including elevated IgG titers, T-helper and T-cytotoxic cell proliferation and increased secretion of IFN-γ and IL-2 following MEV administration.
These findings indicate that our construct possesses strong immunogenic potential and cross-species applicability. We present here a rationally designed MEV candidate that merits further experimental validation as a broad-spectrum vaccine against multiple MAC species.
由鸟分枝杆菌(M. avium)、胞内分枝杆菌(M. intracellulare)和堪萨斯分枝杆菌(M. kansasii)组成的非结核分枝杆菌复合群(MAC)是一类新出现的机会性病原菌,可导致严重的发病率和死亡率,尤其是在免疫功能低下的个体中。尽管这一负担日益加重,但目前尚无疫苗能提供跨物种保护。基于计算机的疫苗设计提供了一种快速、经济高效的策略,可用于识别免疫原性表位并组装具有优化安全性和有效性的多表位构建体。因此,我们旨在开发一种针对多种MAC物种保守抗原的多表位疫苗候选物(MEV)。
通过对津巴布韦非结核分枝杆菌(NTM)的基因组调查,我们组装了鸟分枝杆菌(MCOL)、胞内分枝杆菌(MAV)和堪萨斯分枝杆菌(MINT)的完整基因组。使用本地和全球参考数据集,我们筛选保守的免疫显性蛋白85A、85B和85C以寻找高亲和力T辅助淋巴细胞(THL)表位。对有前景的表位进一步评估其抗原性、免疫原性、物理化学稳定性和人群覆盖率。
对9种靶蛋白进行表位作图产生了82个预测可结合13种II类主要组织相容性复合体(DRB*)等位基因的THL表位,确保在津巴布韦和泛非人群中具有广泛的覆盖率。聚类分析将26个独特表位整合为11个共有肽段,其中65.4%来源于85B蛋白。免疫模拟预测了强烈的体液和细胞反应,包括MEV给药后IgG滴度升高、T辅助细胞和T细胞毒性细胞增殖以及IFN-γ和IL-2分泌增加。
这些发现表明我们的构建体具有强大的免疫原性潜力和跨物种适用性。我们在此展示了一种合理设计的MEV候选物,作为针对多种MAC物种的广谱疫苗,值得进一步的实验验证。