Nagesh Kommu, Sivasenkar Reddy N, Kareem Shaik, Vali Shaik Ramjan, Subba Reddy B V
Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, India-500 007.
Org Biomol Chem. 2025 Jul 16;23(28):6665-6682. doi: 10.1039/d5ob00654f.
Transition metal-catalyzed alkyne annulation has emerged as a powerful strategy for constructing diverse cyclic frameworks with high efficiency and selectivity. This methodology exploits the unique reactivity of transition metals to activate alkynes, enabling the formation of carbocycles and heterocycles. Recent advances-including cooperative catalysis, dual-catalyst systems, and electrochemical transformations-have significantly broadened the scope of achievable structures. The development of novel catalysts and optimized conditions has facilitated the synthesis of complex architectures relevant to pharmaceuticals, natural products, and materials science. Mechanistic studies have enhanced the understanding of reaction pathways, improving control over regio- and stereoselectivity. Incorporating green chemistry principles has further increased the sustainability of these protocols. This review highlights key mechanistic insights, synthetic applications, and future directions in the evolving field of transition metal-catalyzed alkyne annulations.
过渡金属催化的炔烃环化反应已成为一种高效且具有选择性地构建各种环状骨架的强大策略。该方法利用过渡金属独特的反应活性来活化炔烃,从而实现碳环和杂环的形成。最近的进展,包括协同催化、双催化剂体系和电化学转化,显著拓宽了可实现结构的范围。新型催化剂的开发和条件的优化促进了与药物、天然产物和材料科学相关的复杂结构的合成。机理研究加深了对反应途径的理解,提高了对区域选择性和立体选择性的控制。纳入绿色化学原则进一步提高了这些方法的可持续性。本综述重点介绍了过渡金属催化的炔烃环化反应这一不断发展的领域中的关键机理见解、合成应用和未来方向。