Liu Juejing, Wang Yining, Chen Ping, Zhou Yadong, Wang Zheming, Rosso Kevin M, Zhu Zihua, Zhang Xin
Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
Anal Chem. 2025 Jul 1;97(25):13056-13065. doi: 10.1021/acs.analchem.5c00351. Epub 2025 Jun 20.
Single-atom catalysts (SACs) offer superior catalytic performance compared with traditional nanoparticle catalysts but are challenging to develop because of the need for extensive optimization and specialized characterization techniques. This study presents a rapid and versatile method for detecting synthesis conditions and elucidating the deposition mechanisms of SACs on various substrates. By depositing active elements (Au, Cu, Ni, and Rh) on facet-specific single-crystalline substrates (CeO, TiO, MgO, and AlO) and employing time-of-flight secondary ion mass spectroscopy (ToF-SIMS), we assessed facet-dependent deposition behaviors and identified optimal conditions for solution-based SAC synthesis. ToF-SIMS revealed diverse deposition behaviors depending on the active element, substrate type, and facet, including the formation of single-atom sites, aggregation into clusters, or absence of deposition altogether. These findings, which align with previous reports on specific systems, highlight the technique's ability to rapidly differentiate these outcomes across various materials. Our study demonstrates that ToF-SIMS is a viable tool for the rapid screening of synthesis conditions, contributing to the faster and more efficient development of next-generation single-atom catalysts.
与传统纳米颗粒催化剂相比,单原子催化剂(SACs)具有卓越的催化性能,但由于需要进行广泛的优化和专门的表征技术,其开发具有挑战性。本研究提出了一种快速且通用的方法,用于检测合成条件并阐明SACs在各种基底上的沉积机制。通过将活性元素(金、铜、镍和铑)沉积在特定晶面的单晶基底(CeO、TiO、MgO和AlO)上,并采用飞行时间二次离子质谱(ToF-SIMS),我们评估了依赖于晶面的沉积行为,并确定了基于溶液的SAC合成的最佳条件。ToF-SIMS揭示了取决于活性元素、基底类型和晶面的不同沉积行为,包括单原子位点的形成、聚集成簇或完全没有沉积。这些与先前关于特定体系的报道一致的发现,突出了该技术在各种材料中快速区分这些结果的能力。我们的研究表明,ToF-SIMS是快速筛选合成条件的可行工具,有助于更快、更高效地开发下一代单原子催化剂。