Mortazavi-Derazkola Sobhan, Samadipour Maryam, Mohammadparast-Tabas Pouria, Yousefi Masoud
Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran.
Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.
Bioprocess Biosyst Eng. 2025 Jun 22. doi: 10.1007/s00449-025-03193-7.
In this research, silver-decorated zinc oxide nanoparticles (ZnO-Ag NPs) were fabricated using Aesculus hippocastanum fruit extract (ZnO-Ag@AHFE NPs), and their catalytic and antimicrobial properties were studied. The nanoparticles were identified using XRD, TEM, and FT-IR analyses, which confirmed their spherical morphology, uniform structure, and particle sizes ranging from 50 to 70 nm. The ZnO-Ag@AHFE NPs illustrated high antibacterial performance compared to the extract and ZnO NPs alone, achieving a minimum inhibitory concentration (MIC) of 125 µg/mL against Escherichia coli and Pseudomonas aeruginosa. Additionally, the ZnO-Ag@AHFE NPs exhibited outstanding photocatalytic efficiency, degrading methylene blue and rhodamine B dyes by 97.6% and 94.3%, respectively, surpassing the performance of other catalysts. Antioxidant assays revealed that the nanoparticles inhibited 85% of DPPH free radicals, underscoring their potential in biological applications. This study presents a green method using A. hippocastanum fruit extract, offering an innovative approach to enhance the antibacterial, catalytic, and antioxidant properties of ZnO-Ag NPs. These findings highlight the transformative potential of green synthesis strategies for the development of multifunctional nanomaterials.
在本研究中,使用七叶树果实提取物制备了银修饰的氧化锌纳米颗粒(ZnO-Ag NPs)(ZnO-Ag@AHFE NPs),并对其催化和抗菌性能进行了研究。通过X射线衍射(XRD)、透射电子显微镜(TEM)和傅里叶变换红外光谱(FT-IR)分析对纳米颗粒进行了鉴定,证实了它们的球形形态、均匀结构以及50至70纳米的粒径。与提取物和单独的ZnO NPs相比,ZnO-Ag@AHFE NPs表现出较高的抗菌性能,对大肠杆菌和铜绿假单胞菌的最低抑菌浓度(MIC)达到125μg/mL。此外,ZnO-Ag@AHFE NPs表现出出色的光催化效率,分别将亚甲基蓝和罗丹明B染料降解了97.6%和94.3%,超过了其他催化剂的性能。抗氧化分析表明,纳米颗粒抑制了85%的DPPH自由基,突出了它们在生物应用中的潜力。本研究提出了一种使用七叶树果实提取物的绿色方法,为增强ZnO-Ag NPs的抗菌、催化和抗氧化性能提供了一种创新方法。这些发现突出了绿色合成策略在开发多功能纳米材料方面的变革潜力。