Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
Department of Biology, Payame Noor University, Tehran, Iran.
BMC Biotechnol. 2024 Aug 1;24(1):51. doi: 10.1186/s12896-024-00878-x.
This study explores the potential antibacterial applications of zinc oxide nanoparticles (ZnO NPs) enhanced with silver (Ag) using plant gel (ZnO-AgO NPs). The problem addressed is the increasing prevalence of pathogenic bacteria and the need for new, effective antimicrobial agents. ZnO NPs possess distinctive physicochemical properties that enable them to selectively target bacterial cells. Their small size and high surface area-to-volume ratio allow efficient cellular uptake and interaction with bacterial cells. In this study, the average size of the synthesized ZnO-Ag nanoparticles was 77.1 nm, with a significant standard deviation of 33.7 nm, indicating a wide size distribution. The nanoparticles demonstrated remarkable antibacterial efficacy against gram-negative and gram-positive bacteria, with inhibition zones of 14.33 mm for E. coli and 15.66 mm for B. subtilis at a concentration of 300 µg/ml. Minimum inhibitory concentrations (MIC) were determined to be 100 µg/ml for E. coli and 75 µg/ml for S. saprophyticus. Additionally, ZnO-Ag NPs exhibited excellent biocompatibility, making them appropriate for various pharmacological uses. This study utilizes Ferula latisecta gels, offering a sustainable and eco-friendly approach to nanoparticle synthesis. Incorporating of Ag into ZnO NPs significantly enhances their antimicrobial properties, with the combined results showing great inhibition effects on pathogenic microbes. The findings suggest that ZnO-Ag NPs could be a promising candidate for addressing the challenges posed by drug-resistant bacterial infections and enhancing antimicrobial treatments.
本研究探讨了氧化锌纳米粒子(ZnO NPs)与银(Ag)增强的植物凝胶(ZnO-AgO NPs)的潜在抗菌应用。所解决的问题是致病性细菌的日益流行和对新的、有效的抗菌剂的需求。ZnO NPs 具有独特的物理化学性质,使它们能够有选择性地靶向细菌细胞。其小尺寸和高表面积与体积比允许高效的细胞摄取和与细菌细胞相互作用。在这项研究中,合成的 ZnO-Ag 纳米粒子的平均尺寸为 77.1nm,具有显著的标准偏差为 33.7nm,表明存在广泛的尺寸分布。纳米粒子对革兰氏阴性和革兰氏阳性细菌表现出显著的抗菌功效,在浓度为 300μg/ml 时,对大肠杆菌的抑菌圈为 14.33mm,对枯草芽孢杆菌的抑菌圈为 15.66mm。最小抑菌浓度(MIC)分别为 100μg/ml 的大肠杆菌和 75μg/ml 的腐生葡萄球菌。此外,ZnO-Ag NPs 表现出优异的生物相容性,使其适用于各种药理学用途。本研究利用 Ferula latisecta 凝胶,提供了一种可持续和环保的纳米粒子合成方法。Ag 掺入 ZnO NPs 显著增强了它们的抗菌性能,联合结果显示对致病微生物有很好的抑制作用。研究结果表明,ZnO-Ag NPs 可能是解决耐药性细菌感染问题和增强抗菌治疗的有前途的候选物。