Li Jun-Yu, Wang Jia-Chen, Zhou Jun-Hao, Zhao Ke, Liu Si-Hua, Zhao Xue-Jing, Han Shi-Long, Yao Liao-Yuan, Sun Jian-Ke
MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P.R. China.
Angew Chem Int Ed Engl. 2025 Aug 18;64(34):e202509941. doi: 10.1002/anie.202509941. Epub 2025 Jun 30.
Developing artificial biomimetic catalysts with precise spatiotemporal control remains challenging. Here, we present a pH-responsive organic cage salt containing quaternary ammonium moieties ([QA-Cage]-12X, X═Cl or Br counteranions) as a platform for constructing such catalysts. Thermally induced electron transfer from counteranions to ammonium moieties generates radicals throughout cage skeletons ([QA-Cage]-12X), which, combined with nanocavity confinement, facilitates metal precursor reduction and Pd cluster encapsulation, yielding the hybrid catalyst, Pd@[QA-Cage]-12X. The pH-responsive cages enable switching between two catalytic states: Pd@[QA-Cage]-12X, where radicals serve as active sites while Pd accessibility is hindered by numerous counteranions, and Pd@A-Cage, where neutralization of ammonium cages to non-radical amine cages (A-Cage) restores Pd accessibility by removing counteranions and modulating Pd surface charge. This dynamic switching allows real-time modulation of site-specific activity in single-step reactions. Sequential activation of dual active sites by acid-base stimuli enables tandem catalysis. Moreover, fine-tuning the protonation degrees of quaternary ammonium groups with base stimuli unveils an optimized catalyst, Pd@[PQA-Cage]-6X (where PQA-Cage refers to partially quaternized ammonium cages). Such a spatiotemporal control maximizes cooperative performance by balancing spatially isolated radicals and Pd sites for efficient orthogonal tandem catalysis of incompatible oxidation and reduction reactions in one pot.
开发具有精确时空控制的人工仿生催化剂仍然具有挑战性。在此,我们展示了一种含有季铵基团的pH响应性有机笼盐([QA-笼]-12X,X═Cl或Br抗衡阴离子)作为构建此类催化剂的平台。热诱导电子从抗衡阴离子转移到铵基团,在整个笼骨架([QA-笼]-12X)中产生自由基,这与纳米腔限制相结合,促进了金属前驱体的还原和钯簇的封装,从而产生了杂化催化剂Pd@[QA-笼]-12X。pH响应性笼能够在两种催化状态之间切换:Pd@[QA-笼]-12X,其中自由基作为活性位点,而钯的可及性受到大量抗衡阴离子的阻碍;以及Pd@A-笼,其中铵笼中和为非自由基胺笼(A-笼)通过去除抗衡阴离子和调节钯表面电荷来恢复钯的可及性。这种动态切换允许在单步反应中实时调节位点特异性活性。通过酸碱刺激顺序激活双活性位点可实现串联催化。此外,用碱刺激微调季铵基团的质子化程度揭示了一种优化的催化剂Pd@[PQA-笼]-6X(其中PQA-笼指部分季铵化的铵笼)。这种时空控制通过平衡空间隔离的自由基和钯位点,使协同性能最大化,从而在一个反应釜中对不相容的氧化和还原反应进行高效的正交串联催化。