Zhao Ke, Tan Liang-Xiao, Gao Ning, Sun Jian-Ke
MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China.
Nat Commun. 2025 Jul 1;16(1):5698. doi: 10.1038/s41467-025-60292-5.
Combining the chemo- and biocatalytic sites within an integrated catalyst to orchestrate complex, multi-step reactions is highly desirable yet remains a significant challenge. Here, we introduce an ionic organic cage platform for such a chemoenzymatic catalyst, achieved by electrostatic complexation of cationic molecular cage-encapsulated Pd clusters (Pd@C-Cage) and anionic Candida antarctica lipase B. The spatial compartmentalization provided by the cage scaffold averts undesirable coordination interactions between metal and enzyme, while also facilitating substrate channelling between dual active sites in the one-pot tandem dynamic kinetic resolution of amines, resulting in 2.1-2.7 folds enhancement in product yield within the same reaction time, compared to the physical mixture of individual analogues, and even one order of magnitude higher than the mixture of commercial immobilized lipase Novozym 435 and Pd/C. Additionally, the well-defined pore aperture and charged cage skeleton enables precise microenvironment engineering of confined metal sites, providing stringent site/shape selectivity towards substrates featuring different substituents and sizes. This platform is further demonstrated by integrating other metal clusters (e.g., Ru) and enzymes (e.g., Candida antarctica lipase A, Thermomyces lanuginosus lipase, and Glucose oxidase) for a variety of chemoenzymatic reactions, with 2.1-5.3 folds enhancement compared to the physical mixture of individual analogues.
将化学催化位点和生物催化位点整合到一个集成催化剂中以协调复杂的多步反应是非常理想的,但仍然是一个重大挑战。在这里,我们介绍了一种用于这种化学酶催化剂的离子有机笼平台,它是通过阳离子分子笼封装的钯簇(Pd@C-Cage)与阴离子南极假丝酵母脂肪酶B的静电络合实现的。笼状支架提供的空间分隔避免了金属与酶之间不必要的配位相互作用,同时还促进了胺的一锅串联动态动力学拆分中双活性位点之间的底物通道化,与单个类似物的物理混合物相比,在相同反应时间内产物产率提高了2.1-2.7倍,甚至比商业固定化脂肪酶Novozym 435和Pd/C的混合物高出一个数量级。此外,明确的孔径和带电的笼状骨架能够对受限金属位点进行精确的微环境工程,对具有不同取代基和尺寸的底物提供严格的位点/形状选择性。通过整合其他金属簇(如Ru)和酶(如南极假丝酵母脂肪酶A、嗜热栖热菌脂肪酶和葡萄糖氧化酶)用于各种化学酶反应,进一步证明了该平台,与单个类似物的物理混合物相比,产率提高了2.1-5.3倍。