Suppr超能文献

用于细胞类型特异性细胞内递送的微图案产生的冲击波的距离依赖性空间分析。

Distance-dependent spatial analysis of micropattern-generated shockwave for cell-type specific intracellular delivery.

作者信息

Mishra Aniket, Okamoto Shunya, Shibata Takayuki, Santra Tuhin Subhra, Ryu Sangjin, Nagai Moeto

机构信息

Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Japan.

Institute for Research on Next-generation Semiconductor and Sensing Science (IRES²), Toyohashi University of Technology, Toyohashi, Japan.

出版信息

Biomed Microdevices. 2025 Jun 23;27(3):30. doi: 10.1007/s10544-025-00758-x.

Abstract

Intracellular delivery of therapeutic materials remains challenging, with conventional micropattern-assisted optoporation methods making it difficult to analyze the spatial effects of individual laser pulses. Here, we show that pigmented SU-8 microdisks enable precise analysis of distance-dependent shockwave effects on cell membrane permeabilization, achieving delivery yields up to 60% in optimized conditions. Using 20 μm and 50 μm microdisks irradiated by nanosecond laser pulses, we discovered that larger patterns generate more extensive shockwaves leading to increased cell damage over broader ranges, while smaller patterns maintain high delivery efficiency with minimal cellular disruption. Furthermore, cellular adhesion strength critically influences treatment outcomes: strongly adherent SAOS-2 cells showed remarkable resilience while weakly adherent HEK-293 cells experienced extensive damage at greater distances. Our results demonstrate how micropattern size and cell-specific properties determine the spatial extent and efficiency of shockwave-mediated delivery, providing a framework for optimizing intracellular delivery strategies while preserving cell viability.

摘要

治疗材料的细胞内递送仍然具有挑战性,传统的微图案辅助光穿孔方法难以分析单个激光脉冲的空间效应。在这里,我们表明,色素化的SU-8微盘能够精确分析距离依赖性冲击波对细胞膜通透性的影响,在优化条件下实现高达60%的递送率。使用纳秒激光脉冲照射的20μm和50μm微盘,我们发现较大的图案会产生更广泛的冲击波,导致在更广泛的范围内细胞损伤增加,而较小的图案则以最小的细胞破坏维持高递送效率。此外,细胞粘附强度对治疗结果有至关重要的影响:强粘附的SAOS-2细胞表现出显著的弹性,而弱粘附的HEK-293细胞在更大距离处经历广泛的损伤。我们的结果证明了微图案大小和细胞特异性特性如何决定冲击波介导递送的空间范围和效率,为优化细胞内递送策略同时保持细胞活力提供了一个框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67ab/12183134/7fdf10a27ceb/10544_2025_758_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验