Xi Lei, Li Fangkun, Zhou Xuanyi, Liang Ziwei, Zeng Jun, Chen Jiahe, Sun Zhaoyu, Gu Tengteng, Zhao Linwei, Li Zheng, Liu Xingyu, Zhu Min, Liu Jun
Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
ACS Nano. 2025 Sep 9;19(35):31843-31856. doi: 10.1021/acsnano.5c10774. Epub 2025 Aug 25.
All-solid-state Li-sulfur batteries are promising candidates for next-generation energy storage systems, owing to their high energy density and capability to address the safety concerns and electrochemical stability challenges (e.g., the shuttle effect) inherent to liquid-based batteries. However, the electronic insulating nature and limited reactivity of sulfur result in sluggish kinetics, low utilization, and restricted cathode mass loading. Herein, SeS is proposed as a cathode active material due to its enhanced electronic conductivity compared to sulfur. SeS composite cathodes prepared with varying composite strategies exhibited significant differences in the electrochemical performance. Benefiting from enhanced interaction at the three-phase interface, the ball-milled SeS/LiPSCl/Ketjen Black composite cathode (SeS-BM@KB)-based cells delivered a reversible capacity of 673.5 mAh g after 300 cycles at 1 A g at 30 °C with a capacity retention of 80%. Furthermore, high loading cells achieved high areal capacities of up to 14.43 mAh cm. This study highlights the potential of SeS as an outstanding cathode material for developing high-energy-density all-solid-state batteries (ASSBs).
全固态锂硫电池因其高能量密度以及能够解决基于液体的电池固有的安全问题和电化学稳定性挑战(例如穿梭效应),而成为下一代储能系统的有前景的候选者。然而,硫的电子绝缘性质和有限的反应活性导致动力学迟缓、利用率低以及阴极质量负载受限。在此,由于硒化硫(SeS)与硫相比具有增强的电子导电性,因此被提议作为阴极活性材料。采用不同复合策略制备的SeS复合阴极在电化学性能上表现出显著差异。受益于三相界面处增强的相互作用,基于球磨的SeS/LiPSCl/科琴黑复合阴极(SeS-BM@KB)的电池在30℃下以1 A g的电流密度循环300次后,可逆容量为673.5 mAh g,容量保持率为80%。此外,高负载电池实现了高达14.43 mAh cm的高面积容量。这项研究突出了SeS作为开发高能量密度全固态电池(ASSB)的杰出阴极材料的潜力。