Suppr超能文献

用于癫痫发作起始区定位的时空独立成分分类

Spatio-temporal independent component classification for localization of seizure onset zone.

作者信息

Sadjadi Seyyed Mostafa, Ebrahimzadeh Elias, Fallahi Alireza, Habibabadi Jafar Mehvari, Nazem-Zadeh Mohammad-Reza, Soltanian-Zadeh Hamid

机构信息

Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.

Neuroimage Signal and Image Analysis Group, School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.

出版信息

Front Neurol. 2025 Jun 6;16:1515484. doi: 10.3389/fneur.2025.1515484. eCollection 2025.

Abstract

Localization of the epileptic seizure onset zone (SOZ) as a step in presurgical planning leads to higher efficiency in surgical and stimulation treatments. However, the clinical localization procedure is a difficult, long procedure with increasing challenges in patients with complex epileptic foci. The interictal methods have been proposed to assist in presurgical planning with simpler procedures for data acquisition and higher speeds. In this study, spatio-temporal component classification (STCC) is presented for the localization of epileptic foci using resting-state functional magnetic resonance imaging (rs-fMRI) data. This method is based on spatio-temporal independent component analysis (ST-ICA) on rs-fMRI data with a component-sorting procedure based on the dominant power frequency, biophysical constraints, spatial lateralization, local connectivity, temporal energy, and functional non-Gaussianity. STCC was evaluated in 13 patients with temporal lobe epilepsy (TLE) who underwent surgical resection and had seizure-free surgical outcomes after a 12-month follow-up. The results showed promising accuracy, highlighting valuable features that serve as SOZ functional biomarkers. Unlike most presented methods, which depend on simultaneous EEG information, the occurrence of epileptic spikes, and the depth of the epileptic foci, the presented method is entirely based on fMRI data making it independent of such information, simpler to use in terms of data acquisition and artifact removal, and considerably easier to implement.

摘要

癫痫发作起始区(SOZ)的定位作为术前规划的一个步骤,可提高手术和刺激治疗的效率。然而,临床定位过程困难且耗时,对于具有复杂癫痫病灶的患者而言挑战日益增加。发作间期方法已被提出,旨在通过更简单的数据采集程序和更高的速度辅助术前规划。在本研究中,提出了时空成分分类(STCC)方法,用于利用静息态功能磁共振成像(rs-fMRI)数据定位癫痫病灶。该方法基于对rs-fMRI数据进行时空独立成分分析(ST-ICA),并采用基于主导功率频率、生物物理约束、空间偏侧化、局部连通性、时间能量和功能非高斯性的成分排序程序。对13例颞叶癫痫(TLE)患者进行了STCC评估,这些患者接受了手术切除,术后12个月随访无癫痫发作。结果显示出有前景的准确性,突出了作为SOZ功能生物标志物的有价值特征。与大多数现有方法不同,后者依赖同步脑电图信息、癫痫棘波的出现以及癫痫病灶的深度,而本方法完全基于fMRI数据,使其独立于此类信息,在数据采集和伪影去除方面更易于使用,并且实施起来要容易得多。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fd7/12180306/5472070c8ff2/fneur-16-1515484-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验