Suppr超能文献

一种结合全切片基础模型和梯度提升法预测皮肤病理学中BRAF突变状态的新方法。

A new approach combining a whole-slide foundation model and gradient boosting for predicting BRAF mutation status in dermatopathology.

作者信息

Albahri Mohamed, Sauter Daniel, Nensa Felix, Lodde Georg, Livingstone Elisabeth, Schadendorf Dirk, Kukuk Markus

机构信息

Department of Computer Science, Dortmund University of Applied Sciences and Arts, Dortmund 44227, Germany.

Institute for AI in Medicine (IKIM), University Hospital Essen, Essen 45131, Germany.

出版信息

Comput Struct Biotechnol J. 2025 Jun 6;27:2503-2514. doi: 10.1016/j.csbj.2025.06.017. eCollection 2025.

Abstract

Determining the mutation status of proto-oncogene B-Rapidly Accelerated Fibrosarcoma (BRAF) is crucial in melanoma for guiding targeted therapies and improving patient outcomes. While genetic testing has become more accessible, histopathological examination remains central to routine diagnostics, and an image-based strategy could further streamline the associated time and cost. In this study, we propose a new machine learning framework that integrates a large-scale, pretrained foundation model (Prov-GigaPath) with a gradient-boosting classifier (XGBoost) to predict BRAF-V600 mutation status directly from histopathological slides. Our approach was trained and cross-validated on the Skin Cutaneous Melanoma (SKCM) dataset from The Cancer Genome Atlas (TCGA; 275 slides), where the fine-tuned Prov-GigaPath model alone achieved an average Area Under the Curve (AUC) of 0.653 during cross-validation. An additional test on 68 slides from the University Hospital Essen (UHE), Germany, yielded an AUC of 0.697 (95 % CI: 0.553-0.821). Incorporating XGBoost significantly improved performance, reaching an AUC of 0.824 (SD=0.043) during cross-validation and 0.772 (95 % CI: 0.650-0.886) on the independent set-representing a new state-of-the-art for image-only BRAF mutation prediction in melanoma. By employing a weakly supervised, data-efficient pipeline, this method reduces the need for extensive annotations and costly molecular assays. While these results are not intended to replace genetic testing at this stage, they mark a new milestone in predicting BRAF mutation status solely from histopathological slides-a concept not yet fully established in prior research-and underscore the potential for seamlessly integrating automated, AI-driven decision-support tools into diagnostic workflows, thereby expediting personalized therapy decisions and advancing precision oncology.

摘要

确定原癌基因B-快速加速纤维肉瘤(BRAF)的突变状态对于黑色素瘤的靶向治疗指导和改善患者预后至关重要。虽然基因检测变得更加容易获得,但组织病理学检查仍是常规诊断的核心,基于图像的策略可以进一步简化相关的时间和成本。在本研究中,我们提出了一种新的机器学习框架,该框架将大规模预训练基础模型(Prov-GigaPath)与梯度提升分类器(XGBoost)集成,以直接从组织病理学切片预测BRAF-V600突变状态。我们的方法在来自癌症基因组图谱(TCGA;275张切片)的皮肤黑色素瘤(SKCM)数据集上进行训练和交叉验证,其中仅经过微调的Prov-GigaPath模型在交叉验证期间的平均曲线下面积(AUC)为0.653。对德国埃森大学医院(UHE)的68张切片进行的额外测试产生了0.697的AUC(95%CI:0.553-0.821)。纳入XGBoost显著提高了性能,在交叉验证期间达到了0.824的AUC(SD=0.043),在独立集上达到了0.772(95%CI:0.650-0.886)——代表了黑色素瘤仅基于图像的BRAF突变预测的新的技术水平。通过采用弱监督、数据高效的流程,该方法减少了对广泛注释和昂贵分子检测的需求。虽然这些结果目前并非旨在取代基因检测,但它们标志着仅从组织病理学切片预测BRAF突变状态的一个新里程碑——这一概念在先前的研究中尚未完全确立——并强调了将自动化、人工智能驱动的决策支持工具无缝集成到诊断工作流程中的潜力,从而加快个性化治疗决策并推动精准肿瘤学的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/983b/12182775/0bb51283c840/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验