Suppr超能文献

基于信息瓶颈图神经网络的药物-药物相互作用分析:综述

Drug-drug interaction analysis based on information bottleneck graph neural network: A review.

作者信息

Wang Shuhua

机构信息

School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, China.

出版信息

Medicine (Baltimore). 2025 Jun 20;104(25):e42904. doi: 10.1097/MD.0000000000042904.

Abstract

The objective of learning drug-drug interactions is to understand the interaction behavior between compound molecules, which has garnered significant interest in the field of compound molecular science due to the potential harm adverse drug interactions may cause to organisms. Existing machine learning methods mostly rely on manually designed representations of compound molecules, overlooking the essence of compound molecules being composed of multiple molecular substructures and constrained by the knowledge of domain experts in the field of compound molecules. In this work, we propose a novel graph neural network framework for learning compound molecule interactions, which investigates the relationship between pairs of compound molecule graphs by detecting core molecular subgraphs of compound molecules. The proposed graph neural network learning framework leverages the fundamental principle of conditional graph information bottleneck to find the minimum information containing molecular subgraph for a given pair of compound molecule graphs. This framework effectively predicts the essence of compound molecule reactions, wherein the core structure of a compound molecule depends on its interaction with other compound molecules. Extensive experiments on common datasets for prediction tasks of compound molecule interactions demonstrate that the proposed graph neural network learning framework enhances the predictive performance of compound molecule interactions.

摘要

学习药物相互作用的目的是了解化合物分子之间的相互作用行为,由于不良药物相互作用可能对生物体造成潜在危害,这在化合物分子科学领域引起了极大关注。现有的机器学习方法大多依赖于人工设计的化合物分子表示,忽略了化合物分子由多个分子子结构组成并受化合物分子领域专家知识约束这一本质。在这项工作中,我们提出了一种用于学习化合物分子相互作用的新型图神经网络框架,该框架通过检测化合物分子的核心分子子图来研究成对化合物分子图之间的关系。所提出的图神经网络学习框架利用条件图信息瓶颈的基本原理,为给定的一对化合物分子图找到包含分子子图的最小信息。该框架有效地预测了化合物分子反应的本质,其中化合物分子的核心结构取决于其与其他化合物分子的相互作用。在用于化合物分子相互作用预测任务的常见数据集上进行的大量实验表明,所提出的图神经网络学习框架提高了化合物分子相互作用的预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/149a/12187264/3789268fac0c/medi-104-e42904-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验