文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用inmoose进行差异表达分析,inmoose是Python中的集成多组学开源环境。

Differential expression analysis with inmoose, the integrated multi-omic open-source environment in Python.

作者信息

Colange Maximilien, Appé Guillaume, Meunier Léa, Weill Solène, Nordor Akpéli, Behdenna Abdelkader

机构信息

Epigene Labs, Paris, France.

出版信息

BMC Bioinformatics. 2025 Jun 23;26(1):160. doi: 10.1186/s12859-025-06180-7.


DOI:10.1186/s12859-025-06180-7
PMID:40551108
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12183803/
Abstract

BACKGROUND: Differential gene expression analysis is a prominent technique for the analysis of biomolecular data to identify genetic features associated with phenotypes. Limma-for microarray data -, and edgeR and DESeq2-for RNA-Seq data-, are the most widely used tools for differential gene expression analysis of bulk transcriptomic data. RESULTS: We present the differential expression features of InMoose, a Python implementation of R tools limma, edgeR, and DESeq2. We experimentally show that InMoose stands as a drop-in replacement for those tools, with nearly identical results. This ensures reproducibility when interfacing both languages in bioinformatic pipelines. InMoose is an open source software released under the GPL3 license, available at www.github.com/epigenelabs/inmoose and https://inmoose.readthedocs.io . CONCLUSIONS: We present a new Python implementation of state-of-the-art tools limma, edgeR, and DESeq2, to perform differential gene expression analysis of bulk transcriptomic data. This new implementation exhibits results nearly identical to the original tools, improving interoperability and reproducibility between Python and R bioinformatics pipelines.

摘要

背景:差异基因表达分析是一种用于分析生物分子数据以识别与表型相关的遗传特征的重要技术。Limma(用于微阵列数据)以及edgeR和DESeq2(用于RNA测序数据)是用于批量转录组数据差异基因表达分析的最广泛使用的工具。 结果:我们展示了InMoose的差异表达特征,它是R工具limma、edgeR和DESeq2的Python实现。我们通过实验表明,InMoose可作为这些工具的直接替代品,结果几乎相同。这确保了在生物信息学管道中连接两种语言时的可重复性。InMoose是根据GPL3许可发布的开源软件,可在www.github.com/epigenelabs/inmoose和https://inmoose.readthedocs.io获取。 结论:我们提出了一种新的Python实现,用于最先进的工具limma、edgeR和DESeq2,以对批量转录组数据进行差异基因表达分析。这种新实现的结果与原始工具几乎相同,提高了Python和R生物信息学管道之间的互操作性和可重复性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa3/12183803/704bc2366c99/12859_2025_6180_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa3/12183803/704bc2366c99/12859_2025_6180_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa3/12183803/704bc2366c99/12859_2025_6180_Fig1_HTML.jpg

相似文献

[1]
Differential expression analysis with inmoose, the integrated multi-omic open-source environment in Python.

BMC Bioinformatics. 2025-6-23

[2]
SAKit: An all-in-one analysis pipeline for identifying novel proteins resulting from variant events at both large and small scales.

J Bioinform Comput Biol. 2024-10

[3]
Multi-objective context-guided consensus of a massive array of techniques for the inference of Gene Regulatory Networks.

Comput Biol Med. 2024-9

[4]
Nivolumab for adults with Hodgkin's lymphoma (a rapid review using the software RobotReviewer).

Cochrane Database Syst Rev. 2018-7-12

[5]
dsOMOP: Bridging OMOP CDM and DataSHIELD for Secure Federated Analysis of Standardized Clinical Data.

Bioinformatics. 2025-5-6

[6]
DiSC: a statistical tool for fast differential expression analysis of individual-level single-cell RNA-seq data.

Bioinformatics. 2025-6-2

[7]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

[8]
Interventions for promoting habitual exercise in people living with and beyond cancer.

Cochrane Database Syst Rev. 2018-9-19

[9]
Smoking cessation medicines and e-cigarettes: a systematic review, network meta-analysis and cost-effectiveness analysis.

Health Technol Assess. 2021-10

[10]
Impact of residual disease as a prognostic factor for survival in women with advanced epithelial ovarian cancer after primary surgery.

Cochrane Database Syst Rev. 2022-9-26

本文引用的文献

[1]
Bridging the gap between R and Python in bulk transcriptomic data analysis with InMoose.

Sci Rep. 2025-5-24

[2]
OmicVerse: a framework for bridging and deepening insights across bulk and single-cell sequencing.

Nat Commun. 2024-7-16

[3]
PyDESeq2: a python package for bulk RNA-seq differential expression analysis.

Bioinformatics. 2023-9-2

[4]
The scverse project provides a computational ecosystem for single-cell omics data analysis.

Nat Biotechnol. 2023-5

[5]
From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline.

F1000Res. 2016-6-20

[6]
limma powers differential expression analyses for RNA-sequencing and microarray studies.

Nucleic Acids Res. 2015-4-20

[7]
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.

Genome Biol. 2014

[8]
NCBI GEO: archive for functional genomics data sets--update.

Nucleic Acids Res. 2012-11-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索