Aslam Sumaira, Habyarimana Jean De Dieu, Bin Shi Yong
Department of Physical Education, Henan University, Kaifeng, China.
Front Physiol. 2025 Jun 9;16:1598149. doi: 10.3389/fphys.2025.1598149. eCollection 2025.
Neuromuscular adaptations to resistance training drive strength and performance improvements, but differences between elite and recreational athletes remain underexplored. Understanding the underlying mechanisms can refine training approaches and enhance athletic development. This review synthesized findings from the past decade regarding how training status, age, sex, and genetics influence neuromuscular adaptations to resistance training, identified key gaps in the literature, and provided practical recommendations for tailoring training to different athletic levels. This critical review synthesized evidence on neuromuscular adaptations to resistance training, focusing on muscle hypertrophy, architectural changes, motor unit recruitment, neural drive, fiber-type transitions, and genetic influences. Methodological limitations and gaps were highlighted, with a focus on elite versus recreational populations. Muscle hypertrophy and strength gains occur rapidly in novices but plateau in advanced athletes, requiring more complex stimuli. Neural adaptations, including improved motor unit synchronization and reduced antagonist co-contraction, distinguish elite from recreational athletes. Genetic predispositions and training history further modulate adaptations. Fatigue, recovery, and injury risk differ between groups, underscoring the need for tailored monitoring and recovery strategies. Research gaps include inconsistent methodologies, limited elite athlete data, and underrepresentation of female cohorts. Future studies should integrate neurophysiological tools and long-term designs to clarify these mechanisms. Effective training requires adjusting intensity and volume based on an athlete's training status. Foundational strength programs benefit youth, while elite athletes require periodization and advanced methods. Policy-level support for supervised resistance training in youth can enhance performance and injury resilience. Addressing these insights can optimize training outcomes across athletic levels.
神经肌肉对阻力训练的适应性推动了力量和运动表现的提升,但精英运动员和业余运动员之间的差异仍未得到充分探索。了解其潜在机制可以优化训练方法并促进运动能力发展。本综述综合了过去十年中关于训练状态、年龄、性别和基因如何影响神经肌肉对阻力训练适应性的研究结果,确定了文献中的关键空白,并为针对不同运动水平制定个性化训练提供了实用建议。这篇批判性综述综合了关于神经肌肉对阻力训练适应性的证据,重点关注肌肉肥大、结构变化、运动单位募集、神经驱动、纤维类型转变和基因影响。文中强调了方法学上的局限性和空白,重点是精英人群与业余人群的对比。新手的肌肉肥大和力量增长迅速,但高级运动员会出现平台期,这就需要更复杂的刺激。神经适应性,包括改善运动单位同步性和减少拮抗肌共同收缩,是精英运动员与业余运动员的区别所在。基因倾向和训练经历进一步调节适应性。不同群体之间的疲劳、恢复和受伤风险存在差异,这突出了制定个性化监测和恢复策略的必要性。研究空白包括方法不一致、精英运动员数据有限以及女性队列代表性不足。未来的研究应整合神经生理学工具和长期设计来阐明这些机制。有效的训练需要根据运动员的训练状态调整强度和训练量。基础力量训练计划对青少年有益,而精英运动员则需要分期训练和先进方法。政策层面支持青少年进行有监督的阻力训练可以提高运动表现和抗受伤能力。关注这些见解可以优化各个运动水平的训练效果。