Lin Yijun, Wu Wenxu, Liang Xiaoyan, Zhou Liping, Li Gan, Kang Cuiling, Li Wuzhen, Huang Chunyi, Tian Feng
Department of Health Management Centre, The Eighth Affiliated Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China.
Department of Health Examination Center, The First People's Hospital of Nanning, Nanning, China.
Front Med (Lausanne). 2025 Jun 9;12:1584626. doi: 10.3389/fmed.2025.1584626. eCollection 2025.
This study aimed to develop a nomogram for early detection of impaired fasting glucose (IFG), predicting the 5-year risk in Chinese adults due to its link to various diseases.
This retrospective cohort study included 28,875 participants without IFG at baseline, randomly divided them to a training set and a validation set. We developed four predictive models-LASSO, full, stepwise, and MFP-ultimately selecting the LASSO model for nomogram development due to its simplicity and predictive performance. Four prediction model performance was assessed through ROC analysis, calibration curves, and decision curve analysis, with external validation using Shunde Hospital ( = 18,618) and NHANES ( = 2,038) dataset.
We developed a nomogram to predict the risk of IFG by incorporating parameters including age, body mass index (BMI), systolic blood pressure (SBP), fasting plasma glucose (FPG), and triglycerides (TG), which demonstrated performance with AUCs of 0.8167 and 0.8155 in the training and validation set, respectively. External validation achieved AUC 0.9665 (Shunde Hospital dataset) and 0.9171 (NHANES).
Our nomogram provides a personalized, validated approach for assessing 5-year IFG risk in Chinese adults, offering a practical screening tool for primary healthcare and resource-constrained environments.
本研究旨在开发一种用于早期检测空腹血糖受损(IFG)的列线图,因其与多种疾病相关,故预测中国成年人的5年风险。
这项回顾性队列研究纳入了28875名基线时无IFG的参与者,将他们随机分为训练集和验证集。我们开发了四种预测模型——LASSO、全模型、逐步回归模型和MFP,最终选择LASSO模型来开发列线图,因其简单性和预测性能。通过ROC分析、校准曲线和决策曲线分析评估四种预测模型的性能,并使用顺德医院(n = 18618)和美国国家健康与营养检查调查(NHANES,n = 2038)数据集进行外部验证。
我们通过纳入年龄、体重指数(BMI)、收缩压(SBP)、空腹血糖(FPG)和甘油三酯(TG)等参数开发了一种用于预测IFG风险的列线图,该列线图在训练集和验证集中的AUC分别为0.8167和0.8155。外部验证在顺德医院数据集和NHANES中分别达到AUC 0.9665和0.9171。
我们的列线图为评估中国成年人5年IFG风险提供了一种个性化的、经过验证的方法,为基层医疗保健和资源有限的环境提供了一种实用的筛查工具。