Choudhury Prativa, Goel Prabudh
Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, India.
Methods Mol Biol. 2025;2952:411-428. doi: 10.1007/978-1-0716-4690-8_22.
The integration of Artificial Intelligence (AI) with conventional biostatistics represents a pivotal advancement in healthcare research. The synergistic relationship between traditional biostatistical approaches and modern AI techniques highlights their complementary roles in advancing medical research and clinical practice. While conventional biostatistics provides robust frameworks for hypothesis testing, parameter estimation, and statistical inference, AI offers enhanced capabilities in pattern recognition, predictive modeling, and the analysis of complex, high-dimensional datasets. This chapter explores the fundamental concepts and the complementary strengths of these two paradigms, discussing their foundational principles, practical applications, critical challenges, and ethical considerations in clinical practice. Furthermore, we present emerging trends and future directions, focusing on explainable AI, hybrid modeling approaches, real-time data integration, and advances in precision medicine. The comprehensive analysis illuminates the convergence of AI and biostatistics is revolutionizing healthcare research while maintaining scientific rigor and statistical validity, ultimately paving the way for more sophisticated, efficient, and personalized healthcare solutions.
人工智能(AI)与传统生物统计学的整合是医疗保健研究中的一项关键进展。传统生物统计方法与现代人工智能技术之间的协同关系凸显了它们在推进医学研究和临床实践中的互补作用。虽然传统生物统计学为假设检验、参数估计和统计推断提供了强大的框架,但人工智能在模式识别、预测建模以及复杂高维数据集的分析方面具有更强的能力。本章探讨了这两种范式的基本概念和互补优势,讨论了它们的基本原理、实际应用、关键挑战以及临床实践中的伦理考量。此外,我们还介绍了新兴趋势和未来方向,重点关注可解释人工智能、混合建模方法、实时数据整合以及精准医学的进展。全面分析表明,人工智能与生物统计学的融合正在彻底改变医疗保健研究,同时保持科学严谨性和统计有效性,最终为更复杂、高效和个性化的医疗保健解决方案铺平道路。