Suppr超能文献

使用多模态机器学习方法进行失语症严重程度预测。

Aphasia severity prediction using a multi-modal machine learning approach.

作者信息

Hu Xinyi, Varkanitsa Maria, Kropp Emerson, Betke Margrit, Ishwar Prakash, Kiran Swathi

机构信息

Boston University, Data Science and Computing, Boston, 02215, MA, United States of America.

Boston University, Center for Brain Recovery, Boston, 02215, MA, United States of America.

出版信息

Neuroimage. 2025 Jun 17:121300. doi: 10.1016/j.neuroimage.2025.121300.

Abstract

The present study examined an integrated multiple neuroimaging modality (T1 structural, Diffusion Tensor Imaging (DTI), and resting-state FMRI (rsFMRI)) to predict aphasia severity using Western Aphasia Battery-Revised Aphasia Quotient (WAB-R AQ) in 76 individuals with post-stroke aphasia. We employed Support Vector Regression (SVR) and Random Forest (RF) models with supervised feature selection and a stacked feature prediction approach. The SVR model outperformed RF, achieving an average root mean square error (RMSE) of 16.38±5.57, Pearson's correlation coefficient (r) of 0.70±0.13, and mean absolute error (MAE) of 12.67±3.27, compared to RF's RMSE of 18.41±4.34, r of 0.66±0.15, and MAE of 14.64±3.04. Resting-state neural activity and structural integrity emerged as crucial predictors of aphasia severity, appearing in the top 20% of predictor combinations for both SVR and RF. Finally, the feature selection method revealed that functional connectivity in both hemispheres and between homologous language areas is critical for predicting language outcomes in patients with aphasia. The statistically significant difference in performance between the model using only single modality and the optimal multi-modal SVR/RF model (which included both resting-state connectivity and structural information) underscores that aphasia severity is influenced by factors beyond lesion location and volume. These findings suggest that integrating multiple neuroimaging modalities enhances the prediction of language outcomes in aphasia beyond lesion characteristics alone, offering insights that could inform personalized rehabilitation strategies.

摘要

本研究采用综合多种神经成像方式(T1结构成像、扩散张量成像(DTI)和静息态功能磁共振成像(rsFMRI)),利用西方失语症成套测验修订版失语商数(WAB-R AQ)对76名中风后失语患者的失语严重程度进行预测。我们采用了支持向量回归(SVR)和随机森林(RF)模型,以及有监督的特征选择和堆叠特征预测方法。SVR模型的表现优于RF模型,其平均均方根误差(RMSE)为16.38±5.57,皮尔逊相关系数(r)为0.70±0.13,平均绝对误差(MAE)为12.67±3.27,而RF模型的RMSE为18.41±4.34,r为0.66±0.15,MAE为14.64±3.04。静息态神经活动和结构完整性成为失语严重程度的关键预测因素,在SVR和RF的预测因子组合中均位列前20%。最后,特征选择方法表明,双侧半球以及同源语言区域之间的功能连接对于预测失语患者的语言结局至关重要。仅使用单一模式的模型与最优多模式SVR/RF模型(包括静息态连接和结构信息)在性能上的统计学显著差异强调,失语严重程度受病变位置和体积以外的因素影响。这些发现表明,整合多种神经成像方式可增强对失语症语言结局的预测,超越单纯的病变特征,提供可为个性化康复策略提供参考的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2743/12261925/e12dbeac9c3d/nihms-2093783-f0001.jpg

相似文献

本文引用的文献

3
The effect of feature normalization methods in radiomics.影像组学中特征归一化方法的效果
Insights Imaging. 2024 Jan 7;15(1):2. doi: 10.1186/s13244-023-01575-7.
5
Incidence of Aphasia in Ischemic Stroke.缺血性脑卒中后失语症的发生率。
Neuroepidemiology. 2022;56(3):174-182. doi: 10.1159/000524206. Epub 2022 Mar 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验