基于人工智能的计算机断层扫描容积测量实现肺结节随访的早期出院。

Earlier discharge from pulmonary nodule follow-up using artificial intelligence based volume measurements in computed tomography.

作者信息

Gimbel I A, Bergsma M, van de Weijer M A J, Welling A, Olijve A, Algra P R

机构信息

Department of Radiology, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands.

Department of Radiology, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands.

出版信息

Eur J Radiol. 2025 Sep;190:112253. doi: 10.1016/j.ejrad.2025.112253. Epub 2025 Jun 17.

Abstract

BACKGROUND

Lung cancer is the leading cause of cancer death worldwide. Effective screening and early detection are critical in reducing mortality. Artificial intelligence (AI) methods have been proved useful in the diagnosis of pulmonary nodules and early diagnosis of lung cancer. However, the implementation of lung cancer screening and frequent detection of incidental pulmonary nodules lead to more computed tomography scans resulting in increased costs. Therefore, determining the cost-effectiveness of AI is important for implementing these methods in routine clinical practice. Based on volume measurements of pulmonary nodules performed by AI, patients could potentially be discharged earlier from incidental lung nodule follow-up.

OBJECTIVE

To determine whether using AI volume measurements of pulmonary nodules on CT scan results in shorter follow-up time of incidental lung nodule follow-up.

METHODS

For this retrospective cohort study patients with follow-up chest computed tomography for incidental pulmonary nodules were included. The primary outcome was the proportion of patients that could have been discharged earlier from follow-up based on the current BTS guidelines using AI volume measurements.

RESULTS

A total of 252 patients were included, of which 49 (19,4 %; 95 % confidence interval [CI], 14.7-24.9) patients could have been earlier discharged from follow-up using AI volume measurements.

CONCLUSION

Based on current BTS guidelines using AI volume measurements of pulmonary nodules leads to shorter follow-up time period for incidental lung nodule follow-up and therefore a reduction of unnecessary computed tomography imaging, appointments and cost reduction.

摘要

背景

肺癌是全球癌症死亡的主要原因。有效的筛查和早期检测对于降低死亡率至关重要。人工智能(AI)方法已被证明在肺结节诊断和肺癌早期诊断中有用。然而,肺癌筛查的实施以及偶然发现的肺结节的频繁检测导致更多的计算机断层扫描,从而增加了成本。因此,确定人工智能的成本效益对于在常规临床实践中实施这些方法很重要。基于人工智能对肺结节的体积测量,患者可能会更早从偶然肺结节随访中出院。

目的

确定在CT扫描上使用人工智能对肺结节进行体积测量是否会缩短偶然肺结节随访的时间。

方法

对于这项回顾性队列研究,纳入了因偶然肺结节进行胸部计算机断层扫描随访的患者。主要结局是根据当前英国胸科学会(BTS)指南,使用人工智能体积测量可更早从随访中出院的患者比例。

结果

共纳入252例患者,其中49例(19.4%;95%置信区间[CI],14.7 - 24.9)患者使用人工智能体积测量可更早从随访中出院。

结论

根据当前BTS指南,使用人工智能对肺结节进行体积测量可缩短偶然肺结节随访的时间,从而减少不必要的计算机断层扫描成像、预约,并降低成本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索