Baidya Kayal Esha, Ganguly Shuvadeep, Sasi Archana, Dheeksha D S, Saini Manish, Sharma Swetambri, Gupta Shivansh, Sharma Nikhil, Rangarajan Krithika, Bakhshi Sameer, Kandasamy Devasenathipathy, Mehndiratta Amit
Centre for Biomedical Engineering, Indian Institute of Technology Delhi.
Department of Medical Oncology, All India Institute of Medical Sciences New Delhi, Dr. B.R.A. IRCH.
J Comput Assist Tomogr. 2025;49(4):611-624. doi: 10.1097/RCT.0000000000001719. Epub 2025 Jan 27.
Early diagnosis of primary and metastatic lung nodules is critical for effective therapeutic planning. Manual delineation of lung nodules is not time-efficient and is prone to human error as well as interobserver and intraobserver variability. This study aimed to address the unmet need for an open-source computer-aided detection (CAD) system for 3D segmentation of lung and metastatic lung nodules along with radiomic feature extraction.
The proposed adaptive region-growing-based lung nodule segmentation (RGLNS) tool was developed in-house, requiring only manual input to select a seed point within the nodule on computed tomography (CT) images. A total of 230 CT scans from 100 patients with sarcomas were screened. Lung nodules were present in 200 CT scans, which were further analyzed. The accuracy of the lung and nodule segmentation was evaluated qualitatively using a 5-point Likert scale (uninterpretable: 1; poor: 2; fair: 3; good: 4; excellent: 5) and quantitatively using the Dice coefficient and Jaccard index.
A total of 200 CT scans comprising 12,000 CT slices were analyzed, among which 786 lung nodules were identified. Quantitative lung segmentation accuracies (n=2400 slices) yielded a Dice coefficient of 0.92±0.06 and a Jaccard index of 0.85±0.05. Qualitative scores (n=9600 slices) for lung boundary correction (4.56±1.18) and inclusion of pulmonary vessels (4.75±0.72) were rated as good to excellent. Quantitative nodule segmentation (n=142 nodules) accuracies were as follows: dice coefficient=0.92±0.03, 0.88±0.04, 0.86±0.03, 0.85±0.03, 084±0.04 and Jaccard index=0.84±0.03, 0.81±0.04, 0.78±0.04, 0.78±0.02, 0.76±0.04 for solitary (n=73), juxtapleural (n=32), juxtavascular (n=28), fissure-attached (n=6), and ground-glass (n=6) nodules, respectively. Qualitative scores (n=644 nodules) for nodule-boundary were good to excellent [solitary (n=342): 4.97±0.15; juxtapleural (n=155): 4.45±0.60; juxtavascular (n=127): 4.40±0.65; fissure-attached (n=9): 4.40±0.70; ground-glass (n=11): 4.25±0.75] and for exclusion of pulmonary vessels/pleura from nodules were good [juxtapleural (n=155): 4.10±0.66; juxtavascular (n=127): 4.08±0.64; fissure-attached (n=9): 4.30±0.67].
The proposed semiautomated CAD system, RGLNS, requiring minimal manual input, demonstrated robust, and promising segmentation results for the whole lung and various types of metastatic lung nodules.
原发性和转移性肺结节的早期诊断对于有效的治疗规划至关重要。手动勾勒肺结节既不高效,又容易出现人为误差以及观察者间和观察者内的差异。本研究旨在满足对一种开源计算机辅助检测(CAD)系统的需求,该系统用于肺和转移性肺结节的三维分割以及影像组学特征提取。
我们自行开发了基于自适应区域生长的肺结节分割(RGLNS)工具,该工具仅需手动输入以在计算机断层扫描(CT)图像上的结节内选择一个种子点。我们筛选了100例肉瘤患者的230份CT扫描。200份CT扫描中存在肺结节,并对其进行了进一步分析。使用5分李克特量表(无法解释:1分;差:2分;一般:3分;好:4分;优秀:5分)对肺和结节分割的准确性进行定性评估,并使用骰子系数和杰卡德指数进行定量评估。
共分析了包含12,000层CT切片的200份CT扫描,其中识别出786个肺结节。肺分割的定量准确性(n = 2400层)得出骰子系数为0.92±0.06,杰卡德指数为0.85±0.05。肺边界校正(4.56±1.18)和肺血管包含情况(4.75±0.72)的定性评分(n = 9600层)被评为良好至优秀。结节分割的定量准确性(n = 142个结节)如下:孤立性(n = 73个)、胸膜旁(n = 32个)、血管旁(n = 28个)、裂沟附着性(n = 6个)和磨玻璃(n = 6个)结节的骰子系数分别为0.92±0.03、0.88±0.04、0.86±0.03、0.85±0.03、0.84±0.04,杰卡德指数分别为0.84±0.03、0.81±0.04、0.78±0.04、0.78±0.02、0.76±0.04。结节边界的定性评分(n = 644个结节)为良好至优秀[孤立性(n = 342个):4.97±0.15;胸膜旁(n = 155个):4.45±0.60;血管旁(n = 127个):4.40±0.65;裂沟附着性(n = 9个):4.40±0.70;磨玻璃(n = 11个):4.25±0.75],结节中肺血管/胸膜排除情况的定性评分为良好[胸膜旁(n = 155个):4.10±0.66;血管旁(n = 127个):4.08±0.64;裂沟附着性(n = 9个):4.30±0.67]。
所提出的半自动CAD系统RGLNS只需极少的手动输入,在全肺和各种类型的转移性肺结节分割方面显示出稳健且有前景的结果。