Li Guanping, Stefanczyk Olaf, Kumar Kunal, Guérin Laurent, Nakamura Kazuki, Alashoor Maryam, Xiong Lulu, Nakabayashi Koji, Imoto Kenta, Nakamura Yuiga, Maity Sumit Ranjan, Chastanet Guillaume, Chilton Nicholas F, Ohkoshi Shin-Ichi
Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
Department of Chemistry, The University of Manchester, Manchester, M13 9PL, UK.
Adv Mater. 2025 Sep;37(38):e2507457. doi: 10.1002/adma.202507457. Epub 2025 Jun 25.
Thermal and optical-induced ON-OFF switchable materials show vast potential in various fields like sensors, spintronics, and electronic devices, but remain underexplored in the essential terahertz (THz) region. In this context, a unique 1D spin-crossover (SCO) network, {[Fe(4-cyanopyridine)][Hg(µ-SCN)(SCN)(4-cyanopyridine)]} (1), has been designed. Temperature-dependent crystallographic, magnetic, and THz absorption spectroscopic studies indicate an abrupt SCO phenomenon from a high-spin (HS) state to a complete or partial low-spin (LS) state, depending on the cooling rate. At low temperatures, the LS state can be converted into the metastable HS state via the light-induced excited spin-state trapping (LIESST) effect using visible or near-infrared lights. Both temperature and light reversibly modulate the THz absorbance (e.g., 0.82 and 1.37 THz) associated with phonons around Fe(II) centers, confirmed by first-principles calculations and photocrystallographic analysis. This work advances comprehension of the intersection between structures, THz properties, and external-stimuli switching effects and is pivotal for future THz device applications.
热致和光致开-关可切换材料在传感器、自旋电子学和电子设备等各个领域显示出巨大潜力,但在至关重要的太赫兹(THz)区域仍未得到充分探索。在此背景下,设计了一种独特的一维自旋交叉(SCO)网络{[Fe(4-氰基吡啶)][Hg(µ-SCN)(SCN)(4-氰基吡啶)]}(1)。依赖温度的晶体学、磁性和太赫兹吸收光谱研究表明,根据冷却速率的不同,会出现从高自旋(HS)态到完全或部分低自旋(LS)态的突然自旋交叉现象。在低温下,利用可见光或近红外光通过光致激发自旋态捕获(LIESST)效应,低自旋态可转变为亚稳态高自旋态。温度和光均可可逆地调节与Fe(II)中心周围声子相关的太赫兹吸光度(例如0.82和1.37 THz),这一点通过第一性原理计算和光晶体学分析得到证实。这项工作增进了对结构、太赫兹性质和外部刺激切换效应之间交叉点的理解,对未来太赫兹器件应用至关重要。