Suppr超能文献

磺胺的优选平行排列可实现高性能倒置钙钛矿太阳能电池。

Preferred Parallel Alignment of Sulfonamide Enables High-performance Inverted Perovskite Solar Cells.

作者信息

Huang Hailong, Guo Yansen, Wang Wei, Wang Yanbo, Feng Zewu, Xu Jianjun, Zhang Huanyu, Ji Yi, Li Le, Wu Xueqi, Liu Yitong, Peng Yige, Li Xin, Fang Yuan, Zhang Yurou, Huang Chaopeng, Chen Siyu, Zhou Weichang, Tang Dongsheng, Sun Jingsong, Li Youyong, Ding Bin, Liu Jefferson Zhe, Weber Klaus, He Xiang, Cui Yi, Hu Nan, Zhan Hualin, Zhang Xiaohong, Peng Jun

机构信息

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China.

Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou, 310000, China.

出版信息

Adv Mater. 2025 Jun 25:e2507918. doi: 10.1002/adma.202507918.

Abstract

Molecule additives emerge as a highly effective strategy for enhancing the performance and stability of perovskite solar cells (PSCs), owing to their potential in suppressing intrinsic defects in perovskite. However, the influence of atomic configuration and electronic properties of additives on their passivation performance receives little attention. Here, two benzenesulfonamide derivatives, 4-carboxybenzenesulfonamide (CO-BSA) and 4-cyanobenzenesulfonamide (CN-BSA) are investigated, examining the effects of molecules with different electron‑acceptor functional groups on the defect passivation of perovskite layer and the photovoltaic properties of perovskite solar cells (PSCs. It is found that CN‑BSA and CO‑BSA preferentially adopt parallel-aligned binding orientations within the perovskite, enabling strong coordination to two neighboring undercoordinated Pb defect sites. Meanwhile, CO‑BSA exhibits a more favorable electronic configuration than CN‑BSA, which endows the functional groups with a higher electron density that enables stronger dual-site binding with uncoordinated Pb defects. Moreover, incorporating CO-BSA promotes the formation of perovskite films with large grain sizes, high quality, and low defect densities. Consequently, the device modified with CO-BSA achieves an efficiency of 26.53% (certified 26.31%). The encapsulated CO-BSA-based cell retains 96.1% of its initial efficiency after 1100 h of steady-state power output (SPO) measurement in air.

摘要

分子添加剂作为一种提高钙钛矿太阳能电池(PSC)性能和稳定性的高效策略而出现,这是由于它们在抑制钙钛矿内部缺陷方面具有潜力。然而,添加剂的原子构型和电子性质对其钝化性能的影响却很少受到关注。在此,研究了两种苯磺酰胺衍生物,4-羧基苯磺酰胺(CO-BSA)和4-氰基苯磺酰胺(CN-BSA),考察了具有不同电子受体官能团的分子对钙钛矿层缺陷钝化及钙钛矿太阳能电池(PSC)光伏性能的影响。研究发现,CN-BSA和CO-BSA在钙钛矿中优先采用平行排列的结合取向,从而能够与两个相邻的配位不足的Pb缺陷位点形成强配位。同时,CO-BSA表现出比CN-BSA更有利的电子构型,这赋予官能团更高的电子密度,使其能够与未配位的Pb缺陷形成更强的双位点结合。此外,加入CO-BSA可促进形成具有大晶粒尺寸、高质量和低缺陷密度的钙钛矿薄膜。因此,用CO-BSA修饰的器件实现了26.53%的效率(认证效率为26.31%)。在空气中进行1100小时的稳态功率输出(SPO)测量后,基于CO-BSA的封装电池保留了其初始效率的96.1%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验