Suppr超能文献

钴胺素依赖性自由基SAM酶实现的自由基氟甲基化反应

Radical Fluoromethylation Enabled by Cobalamin-Dependent Radical SAM Enzymes.

作者信息

Neti Syam Sundar, Wang Bo, Cui Jiayuan, Iwig David F, York Nicholas J, Blaszczyk Anthony J, Bauerle Matthew R, Booker Squire J

机构信息

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Howard Hughes Medical Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

出版信息

ACS Bio Med Chem Au. 2025 May 6;5(3):464-474. doi: 10.1021/acsbiomedchemau.5c00062. eCollection 2025 Jun 18.

Abstract

Fluorine is an important atom in many drugs because it can improve the efficacy and metabolic stability of many molecules. Strategies to incorporate monofluoromethyl groups in drugs have been limited and have received less attention than strategies for difluoromethylation or trifluoromethylation. Previously, we and others reported the enzymatic monofluoromethylation of several biologically relevant metabolites based on the transfer of a fluoromethyl group from analogs of -adenosylmethionine (SAM) to various nucleophiles (carbon, oxygen, nitrogen, sulfur, and carbon) through a polar S2 mechanism. However, this strategy is limited to molecules containing nucleophilic target atoms. Inspired by a subset of enzymes within the radical SAM superfamily that can methylate inert carbon atoms, we developed an enzymatic strategy to transfer fluoromethyl groups to unactivated carbon atoms. This strategy leverages the ability of halide methyltransferase to generate a transient fluoromethyl-containing SAM analog. Our studies show that -adenosyl--(fluoromethyl)-methionine can undergo reductive cleavage to a 5'-deoxyadenosyl 5'-radical, which initiates radical-dependent fluoromethylation through substrate hydrogen-atom abstraction. Adding fluoromethyl groups to unactivated C-H bonds using radical SAM enzymes is a powerful approach that can be used to derivatize molecules of interest where S2-based fluoromethylation is precluded.

摘要

氟是许多药物中的重要原子,因为它可以提高许多分子的疗效和代谢稳定性。在药物中引入单氟甲基基团的策略一直有限,并且与二氟甲基化或三氟甲基化策略相比受到的关注较少。此前,我们和其他人报道了几种与生物相关的代谢物的酶促单氟甲基化,其基于氟甲基从S-腺苷甲硫氨酸(SAM)类似物转移到各种亲核试剂(碳、氧、氮、硫和碳),通过极性S2机制进行。然而,该策略仅限于含有亲核目标原子的分子。受自由基SAM超家族中能够使惰性碳原子甲基化的一部分酶的启发,我们开发了一种将氟甲基基团转移到未活化碳原子上的酶促策略。该策略利用卤化物甲基转移酶生成含氟甲基的瞬时SAM类似物的能力。我们的研究表明,S-腺苷- S-(氟甲基)-甲硫氨酸可经历还原裂解生成5'-脱氧腺苷5'-自由基,其通过底物氢原子提取引发自由基依赖性氟甲基化。使用自由基SAM酶将氟甲基基团添加到未活化的C-H键上是一种强大的方法,可用于衍生化基于S2的氟甲基化被排除的目标分子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2702/12183590/420151eceee5/bg5c00062_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验