Suppr超能文献

提高颗粒尺寸和形态测量准确性与精度的自动透射电子显微镜图像分析实用指南。

Practical Guide to Automated TEM Image Analysis for Increased Accuracy and Precision in the Measurement of Particle Size and Morphology.

作者信息

Aviles Kristen M, Lear Benjamin J

机构信息

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

出版信息

ACS Nanosci Au. 2025 Apr 17;5(3):117-127. doi: 10.1021/acsnanoscienceau.4c00076. eCollection 2025 Jun 18.

Abstract

A common desire in nanoscience is to describe the size and morphology of nanoparticles as observed from TEM images. Many times, this analysis is done manually, a lengthy process that is prone to errors and ambiguity in the measurements. While several research groups have reported excellent advances in machine-learned approaches to automated TEM image processing, the tools that they have developed often require specialized software or significant knowledge of coding. This state of affairs means that a majority of researchers in the field of nanoscience are not well-equipped to incorporate these advances into their normal workflows. In this tutorial, we describe how to use Weka segmentation within the free and open source program FIJI to automatically identify and characterize nanoparticles from TEM images. The approach we outline is not meant to discount the excellent results of groups working at the forefront of machine learning image analysis; rather, it is meant to bring similar tools to a broader audience by demonstrating how such processing can be done within the GUI-based interface of FIJIa program already commonly used within nanoscience research. We also discuss the advantages that arise from automatic processing of TEM images, including repeatability, time savings, the ability to process low-contrast images, and the additional types of characterization that can be performed following identification of particles. The overall goal is to provide an accessible tool that enables a more robust and repeatable analysis and descriptions of nanoparticles.

摘要

纳米科学领域的一个普遍愿望是描述从透射电子显微镜(TEM)图像中观察到的纳米颗粒的尺寸和形态。很多时候,这种分析是手动完成的,这是一个漫长的过程,在测量中容易出现误差和模糊性。虽然有几个研究小组报告了在机器学习方法用于自动TEM图像处理方面取得的出色进展,但他们开发的工具通常需要专门的软件或大量的编码知识。这种情况意味着纳米科学领域的大多数研究人员没有充分准备好将这些进展纳入他们的常规工作流程。在本教程中,我们描述了如何在免费开源程序FIJI中使用Weka分割来自动从TEM图像中识别和表征纳米颗粒。我们概述的方法并非意在贬低在机器学习图像分析前沿工作的团队所取得的出色成果;相反,它旨在通过展示如何在FIJI基于图形用户界面(GUI)的界面中进行这种处理,将类似的工具带给更广泛的受众,FIJI是纳米科学研究中已经常用的程序。我们还讨论了TEM图像自动处理所带来的优势,包括可重复性、节省时间、处理低对比度图像的能力以及在识别颗粒后可以进行的其他类型的表征。总体目标是提供一个易于使用的工具,能够对纳米颗粒进行更稳健和可重复的分析与描述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5b3/12186846/25bb27a85f1c/ng4c00076_0001.jpg

相似文献

1
Practical Guide to Automated TEM Image Analysis for Increased Accuracy and Precision in the Measurement of Particle Size and Morphology.
ACS Nanosci Au. 2025 Apr 17;5(3):117-127. doi: 10.1021/acsnanoscienceau.4c00076. eCollection 2025 Jun 18.
3
Adapting Safety Plans for Autistic Adults with Involvement from the Autism Community.
Autism Adulthood. 2025 May 28;7(3):293-302. doi: 10.1089/aut.2023.0124. eCollection 2025 Jun.
4
Eliciting adverse effects data from participants in clinical trials.
Cochrane Database Syst Rev. 2018 Jan 16;1(1):MR000039. doi: 10.1002/14651858.MR000039.pub2.
5
Behavioral interventions to reduce risk for sexual transmission of HIV among men who have sex with men.
Cochrane Database Syst Rev. 2008 Jul 16(3):CD001230. doi: 10.1002/14651858.CD001230.pub2.
6
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
7
The use of Open Dialogue in Trauma Informed Care services for mental health consumers and their family networks: A scoping review.
J Psychiatr Ment Health Nurs. 2024 Aug;31(4):681-698. doi: 10.1111/jpm.13023. Epub 2024 Jan 17.
9
Community views on mass drug administration for soil-transmitted helminths: a qualitative evidence synthesis.
Cochrane Database Syst Rev. 2025 Jun 20;6:CD015794. doi: 10.1002/14651858.CD015794.pub2.

本文引用的文献

1
Precise Analysis of Nanoparticle Size Distribution in TEM Image.
Methods Protoc. 2023 Jul 3;6(4):63. doi: 10.3390/mps6040063.
2
Automated analysis of transmission electron micrographs of metallic nanoparticles by machine learning.
Nanoscale Adv. 2023 Mar 23;5(8):2318-2326. doi: 10.1039/d2na00781a. eCollection 2023 Apr 11.
3
Metrology of convex-shaped nanoparticles soft classification machine learning of TEM images.
Nanoscale Adv. 2021 Oct 13;3(24):6956-6964. doi: 10.1039/d1na00524c. eCollection 2021 Dec 7.
4
In search of best automated model: Explaining nanoparticle TEM image segmentation.
Ultramicroscopy. 2022 Mar;233:113437. doi: 10.1016/j.ultramic.2021.113437. Epub 2021 Dec 14.
6
Evaluation of a TEM based Approach for Size Measurement of Particulate (Nano)materials.
Materials (Basel). 2019 Jul 15;12(14):2274. doi: 10.3390/ma12142274.
8
Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification.
Bioinformatics. 2017 Aug 1;33(15):2424-2426. doi: 10.1093/bioinformatics/btx180.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验