Kim Seonkwon, Im Seongil, Kwak In Cheol, Lee Jungwha, Roe Dong Gue, Ju Hyunsu, Cho Jeong Ho
Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
Center of Quantum Technology, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
Adv Mater. 2025 Jun 25:e2506920. doi: 10.1002/adma.202506920.
The von Neumann bottleneck and growing energy demands of conventional computing systems require innovative architectural solutions. Although neuromorphic computing is a promising alternative, implementing efficient on-chip learning mechanisms remains a fundamental challenge. Herein, a novel artificial neural platform is presented that integrates three synergistic components: modulation-optimized presynaptic transistors, threshold switching memristor-based neurons, and adaptive feedback synapses. The platform demonstrates real-time synaptic weight modification through correlation-based learning, effectively implementing Hebbian principles in hardware without requiring extensive peripheral circuitry. Stable device operation and successful implementation of local learning rules are confirmed by systematically characterizing a 6 × 6 array configuration. The experimental results demonstrate a correlation between input-output signals and subsequent weight modifications, establishing a viable pathway toward hardware implementation of Hebbian learning in neuromorphic systems.
冯·诺依曼瓶颈以及传统计算系统不断增长的能源需求需要创新的架构解决方案。尽管神经形态计算是一种很有前景的替代方案,但实现高效的片上学习机制仍然是一个基本挑战。在此,提出了一种新颖的人工神经平台,它集成了三个协同组件:调制优化的突触前晶体管、基于阈值开关忆阻器的神经元以及自适应反馈突触。该平台通过基于相关性的学习展示了实时突触权重修改,无需大量外围电路即可在硬件中有效实现赫布原理。通过系统地表征6×6阵列配置,证实了器件的稳定运行和局部学习规则的成功实现。实验结果表明输入-输出信号与后续权重修改之间存在相关性,为神经形态系统中赫布学习的硬件实现建立了一条可行的途径。