Portan Diana V, Koliadima Athanasia, Kapolos John, Azamfirei Leonard
Department of Mechanical Engineering and Aeronautics, University of Patras, 26504 Patras, Greece.
Physical Chemistry Laboratory, Department of Chemistry, University of Patras, 26504 Patras, Greece.
Biomimetics (Basel). 2025 Jun 5;10(6):370. doi: 10.3390/biomimetics10060370.
Biomaterials and biomedical devices interact with the human body at different levels. At one end of the spectrum, medical devices in contact with tissue pose risks depending on whether they are deployed on the skin or implanted. On the other hand, food packaging and associated material technologies must also be biocompatible to prevent the transfer of harmful molecules and contamination of food, which could impact human health. These seemingly unlinked domains converge into a shared need for the elaboration of new laboratory evaluation protocols that consider recent advances in biomaterials and biodevices, coupled with increasing legal restrictions on the use of animal models. Here, we aim to select and prescribe physiologically relevant microenvironment conditions for biocompatibility testing of novel biomaterials and biodevices. Our discussion spans (1) the development of testing protocols according to material classes, (2) current legislation and standards, and (3) the preparation of biomimetic setups that replicate the microenvironment, with a focus on the multidisciplinary dimension of such studies. Testing spans several characterization domains, beginning with chemical properties, followed by mechanical integrity and, finally, biological response. Biomimetic testing conditions typically include temperature fluctuations, humidity, mechanical stress and loading, exposure to body fluids, and interaction with multifaceted biological systems.
生物材料和生物医学设备在不同层面与人体相互作用。在这个范围的一端,与组织接触的医疗设备会带来风险,这取决于它们是用于皮肤表面还是植入体内。另一方面,食品包装及相关材料技术也必须具备生物相容性,以防止有害分子的转移和食品污染,因为这可能会影响人类健康。这些看似不相关的领域汇聚成一种共同需求,即需要制定新的实验室评估方案,既要考虑生物材料和生物设备的最新进展,又要应对对动物模型使用日益严格的法律限制。在此,我们旨在为新型生物材料和生物设备的生物相容性测试选择并规定生理相关的微环境条件。我们的讨论涵盖:(1)根据材料类别制定测试方案;(2)现行法规和标准;(3)制备模拟微环境的仿生装置,重点关注此类研究的多学科层面。测试涵盖多个表征领域,从化学性质开始,接着是机械完整性,最后是生物反应。仿生测试条件通常包括温度波动、湿度、机械应力和负载、接触体液以及与多方面生物系统的相互作用。