Suppr超能文献

游戏中的多智能体强化学习:研究与应用

Multi-Agent Reinforcement Learning in Games: Research and Applications.

作者信息

Li Haiyang, Yang Ping, Liu Weidong, Yan Shaoqiang, Zhang Xinyi, Zhu Donglin

机构信息

High-Tech Institute of Xi'an, Xi'an 710038, China.

School of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, China.

出版信息

Biomimetics (Basel). 2025 Jun 6;10(6):375. doi: 10.3390/biomimetics10060375.

Abstract

Biological systems, ranging from ant colonies to neural ecosystems, exhibit remarkable self-organizing intelligence. Inspired by these phenomena, this study investigates how bio-inspired computing principles can bridge game-theoretic rationality and multi-agent adaptability. This study systematically reviews the convergence of multi-agent reinforcement learning (MARL) and game theory, elucidating the innovative potential of this integrated paradigm for collective intelligent decision-making in dynamic open environments. Building upon stochastic game and extensive-form game-theoretic frameworks, we establish a methodological taxonomy across three dimensions: value function optimization, policy gradient learning, and online search planning, thereby clarifying the evolutionary logic and innovation trajectories of algorithmic advancements. Focusing on complex smart city scenarios-including intelligent transportation coordination and UAV swarm scheduling-we identify technical breakthroughs in MARL applications for policy space modeling and distributed decision optimization. By incorporating bio-inspired optimization approaches, the investigation particularly highlights evolutionary computation mechanisms for dynamic strategy generation in search planning, alongside population-based learning paradigms for enhancing exploration efficiency in policy refinement. The findings reveal core principles governing how groups make optimal choices in complex environments while mapping the technological development pathways created by blending cross-disciplinary methods to enhance multi-agent systems.

摘要

从蚁群到神经生态系统,生物系统展现出非凡的自组织智能。受这些现象的启发,本研究探讨了受生物启发的计算原理如何在博弈论理性与多智能体适应性之间架起桥梁。本研究系统地回顾了多智能体强化学习(MARL)与博弈论的融合,阐明了这种集成范式在动态开放环境中进行集体智能决策的创新潜力。基于随机博弈和扩展型博弈论框架,我们在价值函数优化、策略梯度学习和在线搜索规划三个维度上建立了一种方法分类法,从而厘清算法进步的演化逻辑和创新轨迹。聚焦于复杂的智慧城市场景,包括智能交通协调和无人机群调度,我们确定了MARL在政策空间建模和分布式决策优化应用中的技术突破。通过纳入受生物启发的优化方法,该研究特别强调了搜索规划中动态策略生成的进化计算机制,以及用于提高策略优化中探索效率的基于群体的学习范式。研究结果揭示了群体在复杂环境中做出最优选择的核心原则,同时描绘了通过融合跨学科方法以增强多智能体系统所创造出的技术发展路径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c19/12190516/d052149712fe/biomimetics-10-00375-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验