Arpaia Pasquale, Cacciapuoti Maria, Cataldo Andrea, Criscuolo Sabatina, De Benedetto Egidio, Masciullo Antonio, Pesola Marisa, Schiavoni Raissa
Department of Information Technology and Electrical Engineering, University of Naples Federico II, 80125 Naples, Italy.
Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National Research Council of Italy, 20133 Milan, Italy.
Biosensors (Basel). 2025 Jun 10;15(6):374. doi: 10.3390/bios15060374.
Quantitative electroencephalography (QEEG) has emerged as a promising tool for detecting Alzheimer's disease (AD). Among QEEG measures, Multiscale Fuzzy Entropy (MFE) shows great potential in identifying AD-related changes in EEG complexity. However, MFE is intrinsically linked to signal amplitude, which can vary substantially among EEG systems, and this hinders the adoption of this metric for AD detection. To overcome this issue, this study investigates different preprocessing strategies to make the calculation of MFE less dependent on the specific amplitude characteristics of the EEG signals at hand. This contributes to generalizing and making more robust the adoption of MFE for AD detection. To demonstrate the robustness of the proposed preprocessing methods, binary classification tasks with Support Vector Machines (SVMs), Random Forest (RF), and K-Nearest Neighbor (KNN) classifiers are used. Performance metrics, such as classification accuracy and Matthews Correlation Coefficient (MCC), are employed to assess the results. The methodology is validated on two public EEG datasets. Results show that amplitude transformation, particularly normalization, significantly enhances AD detection, achieving mean classification accuracy values exceeding 80% with an uncertainty of 10% across all classifiers. These results highlight the importance of preprocessing in improving the accuracy and the reliability of EEG-based AD diagnostic tools, offering potential advancements in patient management and treatment planning.
定量脑电图(QEEG)已成为检测阿尔茨海默病(AD)的一种很有前景的工具。在QEEG测量方法中,多尺度模糊熵(MFE)在识别脑电图复杂性中与AD相关的变化方面显示出巨大潜力。然而,MFE与信号幅度内在相关,而信号幅度在不同脑电图系统之间可能有很大差异,这阻碍了该指标在AD检测中的应用。为克服这一问题,本研究调查了不同的预处理策略,以使MFE的计算减少对手头脑电图信号特定幅度特征的依赖。这有助于推广并使MFE在AD检测中的应用更稳健。为证明所提出预处理方法的稳健性,使用支持向量机(SVM)、随机森林(RF)和K近邻(KNN)分类器进行二元分类任务。采用分类准确率和马修斯相关系数(MCC)等性能指标来评估结果。该方法在两个公开的脑电图数据集上得到验证。结果表明,幅度变换,特别是归一化,显著提高了AD检测能力,所有分类器的平均分类准确率值超过80%,不确定性为10%。这些结果突出了预处理在提高基于脑电图的AD诊断工具的准确性和可靠性方面的重要性,为患者管理和治疗规划提供了潜在的进展。