Suppr超能文献

来自……的SOS3增强了……的耐盐胁迫能力。 你提供的原文似乎不完整,存在信息缺失的情况,这可能会影响准确理解和更完善的翻译。

SOS3 from Enhances Salt Stress Tolerance of .

作者信息

Alzaabi Mariam, Orpilla John, Hazzouri Khaled Michel, Li Ling, Amiri Khaled

机构信息

Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates.

Department of Biology, College of Science, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates.

出版信息

Cells. 2025 Jun 19;14(12):935. doi: 10.3390/cells14120935.

Abstract

Abiotic stress poses a serious challenge in agriculture. Salinity inhibits crop growth and yields by disrupting ionic homeostasis and osmotic balance. One critical mechanism of salt tolerance is the activation of the Salt Overly Sensitive (SOS) signaling pathway. Investigating this pathway in halophytic plants offers valuable insights into the molecular mechanisms underlying salt stress tolerance. This study explores the structure and function of / from the gray mangrove, (). Sequence analysis revealed that AmSOS3 shares significant similarities with orthologs of SOS3/CBL4, including (AtSOS3). All essential functional domains of SOS3, including the four EF-hands, as well as the N-myristoylation and S-acylation motif, were conserved in AmSOS3. Structural modeling, using Modeller, predicted that AmSOS3 forms a homodimer stabilized by a hydrogen bond at the serine 140 position. Functional characterization further demonstrated that complements the mutation in , thus confirming that is an ortholog of . Overexpression of in wild-type enhanced tolerance under salinity stress. The transgenic lines displayed reduced reactive oxygen species (ROS) accumulation and increased ROS-scavenging enzyme activity. These findings indicate that plays a critical role in improving salt stress tolerance and maintaining cellular homeostasis.

摘要

非生物胁迫给农业带来了严峻挑战。盐度通过破坏离子稳态和渗透平衡来抑制作物生长和产量。耐盐的一个关键机制是盐超敏感(SOS)信号通路的激活。在盐生植物中研究该通路能为盐胁迫耐受性的分子机制提供有价值的见解。本研究探索了灰红树( )的结构和功能。序列分析表明,AmSOS3与SOS3/CBL4的直系同源物具有显著相似性,包括(拟南芥SOS3)。SOS3的所有必需功能结构域,包括四个EF手结构,以及N - 肉豆蔻酰化和S - 酰化基序,在AmSOS3中都保守。使用Modeller进行的结构建模预测,AmSOS3形成了一个在丝氨酸140位置通过氢键稳定的同二聚体。功能表征进一步证明, 互补了 中的 突变,从而证实 是 的直系同源物。在野生型 中过表达 增强了盐胁迫下的耐受性。转基因株系显示出活性氧(ROS)积累减少和ROS清除酶活性增加。这些发现表明, 在提高盐胁迫耐受性和维持细胞稳态中起关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b934/12191392/cf72f832b074/cells-14-00935-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验