Wu Yixing, Shieh Alexander, Cen Steven, Hwang Darryl, Lei Xiaomeng, Pawan S J, Aron Manju, Gill Inderbir, Wallace William D, Kuo C-C Jay, Duddalwar Vinay
Media Communications Lab, University of Southern California, Los Angeles, CA 90089, USA.
Radiomics Lab, Department of Radiology, University of Southern California, Los Angeles, CA 90033, USA.
J Imaging. 2025 Jun 10;11(6):191. doi: 10.3390/jimaging11060191.
Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cancer. Extensive efforts have been made to utilize radiomics from computed tomography (CT) imaging to predict tumor immune microenvironment (TIME) measurements. This study proposes a Green Learning (GL) framework for approximating tissue-based biomarkers from CT scans, focusing on the PD-L1 expression and CD68 tumor-associated macrophages (TAMs) in ccRCC. Our approach includes radiomic feature extraction, redundancy removal, and supervised feature selection through a discriminant feature test (DFT), a relevant feature test (RFT), and least-squares normal transform (LNT) for robust feature generation. For the PD-L1 expression in 52 ccRCC patients, treated as a regression problem, our GL model achieved a 5-fold cross-validated mean squared error (MSE) of 0.0041 and a Mean Absolute Error (MAE) of 0.0346. For the TAM population (CD68+/PanCK+), analyzed in 78 ccRCC patients as a binary classification task (at a 0.4 threshold), the model reached a 10-fold cross-validated Area Under the Receiver Operating Characteristic (AUROC) of 0.85 (95% CI [0.76, 0.93]) using 10 LNT-derived features, improving upon the previous benchmark of 0.81. This study demonstrates the potential of GL in radiomic analyses, offering a scalable, efficient, and interpretable framework for the non-invasive approximation of key biomarkers.
透明细胞肾细胞癌(ccRCC)是最常见的肾癌类型。人们已经做出了广泛的努力,利用计算机断层扫描(CT)成像的放射组学来预测肿瘤免疫微环境(TIME)测量值。本研究提出了一种绿色学习(GL)框架,用于从CT扫描中近似基于组织的生物标志物,重点关注ccRCC中的程序性死亡受体配体1(PD-L1)表达和CD68肿瘤相关巨噬细胞(TAM)。我们的方法包括放射组学特征提取、冗余去除,以及通过判别特征测试(DFT)、相关特征测试(RFT)和最小二乘正态变换(LNT)进行监督特征选择,以生成稳健的特征。对于52例ccRCC患者的PD-L1表达,作为一个回归问题处理,我们的GL模型在5折交叉验证下的均方误差(MSE)为0.0041,平均绝对误差(MAE)为0.0346。对于在78例ccRCC患者中作为二元分类任务(阈值为0.4)分析的TAM群体(CD68+/PanCK+),该模型使用10个LNT衍生特征在10折交叉验证下的受试者操作特征曲线下面积(AUROC)达到0.85(95%置信区间[0.76, 0.93]),优于之前0.81的基准。这项研究证明了GL在放射组学分析中的潜力,为关键生物标志物的非侵入性近似提供了一个可扩展、高效且可解释的框架。