Suppr超能文献

使用CT影像组学特征预测肾细胞癌中CD8-T细胞浸润和PD-L1表达的可行性

Feasibility of using CT radiomic signatures for predicting CD8-T cell infiltration and PD-L1 expression in renal cell carcinoma.

作者信息

Varghese Bino, Cen Steven, Zahoor Haris, Siddiqui Imran, Aron Manju, Sali Akash, Rhie Suhn, Lei Xiaomeng, Rivas Marielena, Liu Derek, Hwang Darryl, Quinn David, Desai Mihir, Vaishampayan Ulka, Gill Inderbir, Duddalwar Vinay

机构信息

USC Radiomics Laboratory, Keck School of Medicine, Department of Radiology, University of Southern California, Los Angeles, CA, USA.

Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA.

出版信息

Eur J Radiol Open. 2022 Sep 2;9:100440. doi: 10.1016/j.ejro.2022.100440. eCollection 2022.

Abstract

OBJECTIVES

To identify computed tomography (CT)-based radiomic signatures of cluster of differentiation 8 (CD8)-T cell infiltration and programmed cell death ligand 1 (PD-L1) expression levels in patients with clear-cell renal cell carcinoma (ccRCC).

METHODS

Seventy-eight patients with pathologically confirmed localized ccRCC, preoperative multiphase CT and tumor resection specimens were enrolled in this retrospective study. Regions of interest (ROI) of the ccRCC volume were manually segmented from the CT images and processed using a radiomics panel comprising of 1708 metrics. The extracted metrics were used as inputs to three machine learning classifiers: Random Forest, AdaBoost, and ElasticNet to create radiomic signatures for CD8-T cell infiltration and PD-L1 expression, respectively.

RESULTS

Using a cut-off of 80 lymphocytes per high power field, 59 % were classified to CD8 highly infiltrated tumors and 41 % were CD8 non highly infiltrated tumors, respectively. An ElasticNet classifier discriminated between these two groups of CD8-T cells with an AUC of 0.68 (95 % CI, 0.55-0.80). In addition, based on tumor proportion score with a cut-off of > 1 % tumor cells expressing PD-L1, 76 % were PD-L1 positive and 24 % were PD-L1 negative. An Adaboost classifier discriminated between PD-L1 positive and PD-L1 negative tumors with an AUC of 0.8 95 % CI: (0.66, 0.95). 3D radiomics metrics of graylevel co-occurrence matrix (GLCM) and graylevel run-length matrix (GLRLM) metrics drove the performance for CD8-Tcell and PD-L1 classification, respectively.

CONCLUSIONS

CT-radiomic signatures can differentiate tumors with high CD8-T cell infiltration with moderate accuracy and positive PD-L1 expression with good accuracy in ccRCC.

摘要

目的

识别基于计算机断层扫描(CT)的透明细胞肾细胞癌(ccRCC)患者中分化簇8(CD8)-T细胞浸润和程序性细胞死亡配体1(PD-L1)表达水平的放射组学特征。

方法

本回顾性研究纳入78例经病理证实的局限性ccRCC患者,收集其术前多期CT及肿瘤切除标本。从CT图像中手动分割出ccRCC体积的感兴趣区域(ROI),并使用包含1708个指标的放射组学面板进行处理。提取的指标用作三种机器学习分类器的输入:随机森林、自适应增强和弹性网络,分别创建CD8-T细胞浸润和PD-L1表达的放射组学特征。

结果

以每高倍视野80个淋巴细胞为界值,分别有59%被分类为CD8高浸润肿瘤和41%为CD8非高浸润肿瘤。弹性网络分类器区分这两组CD8-T细胞的曲线下面积(AUC)为0.68(95%CI,0.55-0.80)。此外,基于肿瘤比例评分,以>1%的肿瘤细胞表达PD-L1为界值,76%为PD-L1阳性,24%为PD-L1阴性。自适应增强分类器区分PD-L1阳性和PD-L1阴性肿瘤的AUC为0.8(95%CI:0.66,0.95)。灰度共生矩阵(GLCM)和灰度游程长度矩阵(GLRLM)指标的三维放射组学指标分别推动了CD8-T细胞和PD-L1分类的性能。

结论

CT放射组学特征在ccRCC中能够以中等准确度区分高CD8-T细胞浸润的肿瘤,并以良好的准确度区分PD-L1阳性表达的肿瘤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验