Beregi-Kovacs Marcell, Harangi Balazs, Hajdu Andras, Gat Gyorgy
Faculty of Informatics, University of Debrecen, 4028 Debrecen, Hungary.
Institute of Mathematics, University of Debrecen, 4028 Debrecen, Hungary.
J Imaging. 2025 Jun 13;11(6):196. doi: 10.3390/jimaging11060196.
The synthesis of realistic fog in images is critical for applications such as autonomous navigation, augmented reality, and visual effects. Traditional methods based on Koschmieder's law or GAN-based image translation typically assume homogeneous fog distributions and rely on oversimplified scattering models, limiting their physical realism. In this paper, we propose a physics-driven approach to fog synthesis by discretizing the Radiative Transfer Equation (RTE). Our method models spatially inhomogeneous fog and anisotropic multi-scattering, enabling the generation of structurally consistent and perceptually plausible fog effects. To evaluate performance, we construct a dataset of real-world foggy, cloudy, and sunny images and compare our results against both Koschmieder-based and GAN-based baselines. Experimental results show that our method achieves a lower Fréchet Inception Distance (-10% vs. Koschmieder, -42% vs. CycleGAN) and a higher Pearson correlation (+4% and +21%, respectively), highlighting its superiority in both feature space and structural fidelity. These findings highlight the potential of RTE-based fog synthesis for physically consistent image augmentation under challenging visibility conditions. However, the method's practical deployment may be constrained by high memory requirements due to tensor-based computations, which must be addressed for large-scale or real-time applications.
图像中逼真雾效果的合成对于诸如自主导航、增强现实和视觉效果等应用至关重要。基于科斯米德定律的传统方法或基于生成对抗网络(GAN)的图像翻译通常假设雾分布均匀,并依赖过于简化的散射模型,这限制了它们的物理真实感。在本文中,我们提出了一种通过离散辐射传输方程(RTE)来实现雾合成的物理驱动方法。我们的方法对空间不均匀的雾和各向异性的多次散射进行建模,能够生成结构一致且在感知上合理的雾效果。为了评估性能,我们构建了一个包含真实世界中雾天、阴天和晴天图像的数据集,并将我们的结果与基于科斯米德定律和基于GAN的基线进行比较。实验结果表明,我们的方法实现了更低的弗雷歇因距离(与基于科斯米德定律的方法相比降低了10%,与CycleGAN相比降低了42%)和更高的皮尔逊相关性(分别提高了4%和21%),突出了其在特征空间和结构保真度方面的优势。这些发现凸显了基于RTE的雾合成在具有挑战性的能见度条件下进行物理一致的图像增强的潜力。然而,由于基于张量的计算,该方法的实际部署可能会受到高内存需求的限制,对于大规模或实时应用必须解决这一问题。