Suppr超能文献

MedSAM/MedSAM2特征融合:增强nnUNet用于二维时间飞跃法磁共振血管造影脑动脉血管分割

MedSAM/MedSAM2 Feature Fusion: Enhancing nnUNet for 2D TOF-MRA Brain Vessel Segmentation.

作者信息

Zhong Han, Zhang Jiatian, Zhao Lingxiao

机构信息

School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.

Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215613, China.

出版信息

J Imaging. 2025 Jun 18;11(6):202. doi: 10.3390/jimaging11060202.

Abstract

Accurate segmentation of brain vessels is critical for diagnosing cerebral stroke, yet existing AI-based methods struggle with challenges such as small vessel segmentation and class imbalance. To address this, our study proposes a novel 2D segmentation method based on the nnUNet framework, enhanced with MedSAM/MedSAM2 features, for arterial vessel segmentation in time-of-flight magnetic resonance angiography (TOF-MRA) brain slices. The approach first constructs a baseline segmentation network using nnUNet, then incorporates MedSAM/MedSAM2's feature extraction module to enhance feature representation. Additionally, focal loss is introduced to address class imbalance. Experimental results on the CAS2023 dataset demonstrate that the MedSAM2-enhanced model achieves a 0.72% relative improvement in Dice coefficient and reduces HD95 (mm) and ASD (mm) from 48.20 mm to 46.30 mm and from 5.33 mm to 4.97 mm, respectively, compared to the baseline nnUNet, showing significant enhancements in boundary localization and segmentation accuracy. This approach addresses the critical challenge of small vessel segmentation in TOF-MRA, with the potential to improve cerebrovascular disease diagnosis in clinical practice.

摘要

准确分割脑血管对于诊断脑卒至关重要,然而现有的基于人工智能的方法在诸如小血管分割和类别不平衡等挑战面前举步维艰。为解决这一问题,我们的研究提出了一种基于nnUNet框架的新型二维分割方法,该方法通过MedSAM/MedSAM2特征进行增强,用于在飞行时间磁共振血管造影(TOF-MRA)脑切片中进行动脉血管分割。该方法首先使用nnUNet构建一个基线分割网络,然后整合MedSAM/MedSAM2的特征提取模块以增强特征表示。此外,引入焦点损失来解决类别不平衡问题。在CAS2023数据集上的实验结果表明,与基线nnUNet相比,MedSAM2增强模型的Dice系数相对提高了0.72%,HD95(mm)从48.20 mm降至46.30 mm,ASD(mm)从5.33 mm降至4.97 mm,在边界定位和分割准确性方面显示出显著提高。这种方法解决了TOF-MRA中小血管分割的关键挑战,有可能改善临床实践中脑血管疾病的诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1b/12194608/959348bb7200/jimaging-11-00202-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验