Suppr超能文献

使用五种不同搜索引擎,通过导航辅助临床试验搜索对癌症患者临床试验搜索结果进行横断面分析。

Cross sectional analysis of clinical trials search results for cancer patients using a navigator-assisted clinical trials search using five different search engines.

作者信息

Paunic Milica, Rim Sanghyuk, Hilal Olla, Nassar Renée, Driedger Zoe, Zaib Farwa, Touma Kayla, Hossami Mahmoud, Abdel-Nabi Rhonda, Hirmiz Roaa, Hamm Caroline

机构信息

Department of Medicine, Temerty School of Medicine, University of Toronto, Toronto, Ontario, Canada.

Department of Medicine, Schulich School of Medicine & Dentistry, Western University, Windsor, Ontario, Canada.

出版信息

PLoS One. 2025 Jun 25;20(6):e0326139. doi: 10.1371/journal.pone.0326139. eCollection 2025.

Abstract

BACKGROUND

Clinical trials play a critical role in providing patients with access to novel treatments and therapies. However, limitations in clinical trial search engines impede healthcare professionals and patients from accessing the most suitable clinical trials. This study aimed to address this issue by conducting a critical analysis of several prominent clinical trial search websites, including ClinicalTrials.gov, Canadian Cancer Trials, Clinical Trials Ontario, Canadian Cancer Clinical Trials Network, and Q-CROC.

METHODS

To identify areas for improvement, three skilled clinical trials navigators independently curated clinical trial searches for 18 cancer patients over a 2-month period. After verifying patients' eligibility for enrollment in clinical trials, the navigators documented their search outcomes and identified several limitations in the current search engines.

RESULTS

Careful curation of clinical trials for 18 patients revealed 247 trials. However, 140 eligible trials out of 247 (57% with 95% binomial confidence interval [50%, 63%]) were found only on alternative websites yet not discoverable on the initial ClinicalTrials.gov searches, even though they were listed on ClinicalTrials.gov. Our study revealed multiple deficiencies in available clinical trials search engines. Lack of reliability was repeatedly identified in all search engines.

DISCUSSION

This study highlights that the current clinical trial search system needs improvement to enhance patient outcomes. It needs to be highlighted that these searches were performed by trained and dedicated clinical trials navigators. The challenges facing patients and health care professionals in navigating would be much greater. The findings from this study can serve as a foundation for the development of enhanced search engines with improved functionality, which will enable healthcare professionals and patients to find and access the most suitable clinical trials with greater ease and accuracy.

摘要

背景

临床试验在为患者提供获得新型治疗方法的途径方面发挥着关键作用。然而,临床试验搜索引擎的局限性阻碍了医疗保健专业人员和患者获取最合适的临床试验。本研究旨在通过对几个著名的临床试验搜索网站进行批判性分析来解决这一问题,这些网站包括美国国立医学图书馆临床试验数据库(ClinicalTrials.gov)、加拿大癌症试验、安大略省临床试验、加拿大癌症临床试验网络和魁北克癌症研究组织(Q-CROC)。

方法

为了确定改进领域,三名熟练的临床试验导航员在两个月的时间里独立为18名癌症患者精心策划临床试验搜索。在核实患者参与临床试验的资格后,导航员记录了他们的搜索结果,并确定了当前搜索引擎中的几个局限性。

结果

对18名患者的临床试验进行仔细筛选后发现了247项试验。然而,在247项试验中有140项符合条件的试验(57%,95%二项式置信区间[50%,63%])仅在其他网站上被发现,而在最初的美国国立医学图书馆临床试验数据库搜索中无法找到,尽管它们在美国国立医学图书馆临床试验数据库上列出。我们的研究揭示了现有临床试验搜索引擎存在的多个缺陷。在所有搜索引擎中都反复发现缺乏可靠性。

讨论

本研究强调,当前的临床试验搜索系统需要改进以提高患者的治疗效果。需要强调的是,这些搜索是由训练有素且专注的临床试验导航员进行的。患者和医疗保健专业人员在导航方面面临的挑战会大得多。本研究的结果可为开发功能增强的搜索引擎奠定基础,这将使医疗保健专业人员和患者能够更轻松、准确地找到并获取最合适的临床试验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验