Suppr超能文献

使用潜在扩散模型进行对比增强图像合成,用于脑转移瘤MRI引导自适应放疗中的精确在线肿瘤勾画。

Contrast-enhanced image synthesis using latent diffusion model for precise online tumor delineation in MRI-guided adaptive radiotherapy for brain metastases.

作者信息

Ma Xiangyu, Ma Yuchao, Wang Yu, Li Canjun, Liu Yuxiang, Chen Xinyuan, Dai Jianrong, Bi Nan, Men Kuo

机构信息

Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China.

出版信息

Phys Med Biol. 2025 Jul 3;70(13). doi: 10.1088/1361-6560/ade845.

Abstract

Magnetic resonance imaging-guided adaptive radiotherapy (MRIgART) is a promising technique for long-course radiotherapy of large-volume brain metastasis (BM), due to the capacity to track tumor changes throughout treatment course. Contrast-enhanced T1-weighted (T1CE) MRI is essential for BM delineation, yet is often unavailable during online treatment concerning the requirement of contrast agent injection. This study aims to develop a synthetic T1CE (sT1CE) generation method to facilitate accurate online adaptive BM delineation.We developed a novel ControlNet-coupled latent diffusion model (CTN-LDM) combined with a personalized transfer learning strategy and a denoising diffusion implicit model inversion method to generate high quality sT1CE images from online T2-weighted (T2) or fluid attenuated inversion recovery (FLAIR) images. Visual quality of sT1CE images generated by the CTN-LDM was compared with other deep learning models. BM delineation results using the combination of our sT1CE images and online T2/FLAIR images were compared with the results solely using online T2/FLAIR images, which is the current clinical method.Visual quality of sT1CE images from our CTN-LDM was superior to competing models both quantitatively and qualitatively. Leveraging sT1CE images, radiation oncologists achieved significant higher precision of adaptive BM delineation, with average Dice similarity coefficient of 0.93 ± 0.02 vs. 0.86 ± 0.04 (0.01), compared with only using online T2/FLAIR images.The proposed method could generate high quality sT1CE images and significantly improve accuracy of online adaptive tumor delineation for long-course MRIgART of large-volume BM, potentially enhancing treatment outcomes and minimizing toxicity.

摘要

磁共振成像引导的自适应放疗(MRIgART)是一种很有前景的技术,可用于大体积脑转移瘤(BM)的长程放疗,因为它能够在整个治疗过程中追踪肿瘤变化。对比增强T1加权(T1CE)磁共振成像对于BM的勾画至关重要,但由于需要注射造影剂,在在线治疗期间通常无法获得。本研究旨在开发一种合成T1CE(sT1CE)生成方法,以促进准确的在线自适应BM勾画。我们开发了一种新颖的控制网络耦合潜在扩散模型(CTN-LDM),结合个性化迁移学习策略和去噪扩散隐式模型反演方法,从在线T2加权(T2)或液体衰减反转恢复(FLAIR)图像生成高质量的sT1CE图像。将CTN-LDM生成的sT1CE图像的视觉质量与其他深度学习模型进行比较。将我们的sT1CE图像与在线T2/FLAIR图像相结合的BM勾画结果与仅使用在线T2/FLAIR图像(当前临床方法)的结果进行比较。我们的CTN-LDM生成的sT1CE图像的视觉质量在定量和定性方面均优于竞争模型。利用sT1CE图像,放射肿瘤学家实现了显著更高的自适应BM勾画精度,平均骰子相似系数为0.93±0.02,而仅使用在线T2/FLAIR图像时为0.86±0.04(P<0.01)。所提出的方法可以生成高质量的sT1CE图像,并显著提高大体积BM的长程MRIgART在线自适应肿瘤勾画的准确性,有可能提高治疗效果并将毒性降至最低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验