Ma Xiangyu, Ma Yuchao, Wang Yu, Li Canjun, Liu Yuxiang, Chen Xinyuan, Dai Jianrong, Bi Nan, Men Kuo
Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China.
Phys Med Biol. 2025 Jul 3;70(13). doi: 10.1088/1361-6560/ade845.
Magnetic resonance imaging-guided adaptive radiotherapy (MRIgART) is a promising technique for long-course radiotherapy of large-volume brain metastasis (BM), due to the capacity to track tumor changes throughout treatment course. Contrast-enhanced T1-weighted (T1CE) MRI is essential for BM delineation, yet is often unavailable during online treatment concerning the requirement of contrast agent injection. This study aims to develop a synthetic T1CE (sT1CE) generation method to facilitate accurate online adaptive BM delineation.We developed a novel ControlNet-coupled latent diffusion model (CTN-LDM) combined with a personalized transfer learning strategy and a denoising diffusion implicit model inversion method to generate high quality sT1CE images from online T2-weighted (T2) or fluid attenuated inversion recovery (FLAIR) images. Visual quality of sT1CE images generated by the CTN-LDM was compared with other deep learning models. BM delineation results using the combination of our sT1CE images and online T2/FLAIR images were compared with the results solely using online T2/FLAIR images, which is the current clinical method.Visual quality of sT1CE images from our CTN-LDM was superior to competing models both quantitatively and qualitatively. Leveraging sT1CE images, radiation oncologists achieved significant higher precision of adaptive BM delineation, with average Dice similarity coefficient of 0.93 ± 0.02 vs. 0.86 ± 0.04 (0.01), compared with only using online T2/FLAIR images.The proposed method could generate high quality sT1CE images and significantly improve accuracy of online adaptive tumor delineation for long-course MRIgART of large-volume BM, potentially enhancing treatment outcomes and minimizing toxicity.
磁共振成像引导的自适应放疗(MRIgART)是一种很有前景的技术,可用于大体积脑转移瘤(BM)的长程放疗,因为它能够在整个治疗过程中追踪肿瘤变化。对比增强T1加权(T1CE)磁共振成像对于BM的勾画至关重要,但由于需要注射造影剂,在在线治疗期间通常无法获得。本研究旨在开发一种合成T1CE(sT1CE)生成方法,以促进准确的在线自适应BM勾画。我们开发了一种新颖的控制网络耦合潜在扩散模型(CTN-LDM),结合个性化迁移学习策略和去噪扩散隐式模型反演方法,从在线T2加权(T2)或液体衰减反转恢复(FLAIR)图像生成高质量的sT1CE图像。将CTN-LDM生成的sT1CE图像的视觉质量与其他深度学习模型进行比较。将我们的sT1CE图像与在线T2/FLAIR图像相结合的BM勾画结果与仅使用在线T2/FLAIR图像(当前临床方法)的结果进行比较。我们的CTN-LDM生成的sT1CE图像的视觉质量在定量和定性方面均优于竞争模型。利用sT1CE图像,放射肿瘤学家实现了显著更高的自适应BM勾画精度,平均骰子相似系数为0.93±0.02,而仅使用在线T2/FLAIR图像时为0.86±0.04(P<0.01)。所提出的方法可以生成高质量的sT1CE图像,并显著提高大体积BM的长程MRIgART在线自适应肿瘤勾画的准确性,有可能提高治疗效果并将毒性降至最低。