Shaju Jashwanth, Pavlovska Elina, Suba Ralfs, Wang Junliang, Ouacel Seddik, Vasselon Thomas, Aluffi Matteo, Mazzella Lucas, Geffroy Clément, Ludwig Arne, Wieck Andreas D, Urdampilleta Matias, Bäuerle Christopher, Kashcheyevs Vyacheslavs, Sellier Hermann
Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, France.
Department of Physics, University of Latvia, Riga, Latvia.
Nature. 2025 Jun;642(8069):928-933. doi: 10.1038/s41586-025-09139-z. Epub 2025 Jun 25.
Emergence of universal collective behaviour from interactions within a sufficiently large group of elementary constituents is a fundamental scientific concept. In physics, correlations in fluctuating microscopic observables can provide key information about collective states of matter, such as deconfined quark-gluon plasma in heavy-ion collisions or expanding quantum degenerate gases. Mesoscopic colliders, through shot-noise measurements, have provided smoking-gun evidence on the nature of exotic electronic excitations such as fractional charges, levitons and anyon statistics. Yet, bridging the gap between two-particle collisions and the emergence of collectivity as the number of interacting particles increases remains a challenging task at the microscopic level. Here we demonstrate all-body correlations in the partitioning of electron droplets containing up to N = 5 electrons, driven by a moving potential well through a Y-junction in a semiconductor device. Analysing the partitioning data using high-order multivariate cumulants and finite-size scaling towards the thermodynamic limit reveals distinctive fingerprints of a strongly correlated Coulomb liquid. These fingerprints agree well with a universal limit at which the partitioning of a droplet is predicted by a single collective variable. Our electron-droplet scattering experiments illustrate how coordinated behaviour emerges through interactions of only a few elementary constituents. Studying similar signatures in other physical platforms such as cold-atom simulators or collections of anyonic excitations may help identify emergence of exotic phases and, more broadly, advance understanding of matter engineering.
在足够大的一组基本组分之间的相互作用中出现普遍的集体行为是一个基本的科学概念。在物理学中,波动微观可观测量中的相关性可以提供有关物质集体状态的关键信息,例如重离子碰撞中解禁的夸克-胶子等离子体或膨胀的量子简并气体。介观对撞机通过散粒噪声测量,为诸如分数电荷、轻子和任意子统计等奇异电子激发的性质提供了确凿证据。然而,弥合双粒子碰撞与随着相互作用粒子数量增加而出现的集体性之间的差距,在微观层面上仍然是一项具有挑战性的任务。在此,我们展示了在半导体器件中通过Y形结移动势阱驱动的、包含多达N = 5个电子的电子液滴分配中的全关联。使用高阶多元累积量和向热力学极限的有限尺寸标度分析分配数据,揭示了强关联库仑液体的独特特征。这些特征与由单个集体变量预测液滴分配的通用极限非常吻合。我们的电子液滴散射实验说明了仅通过少数基本组分的相互作用如何出现协同行为。研究其他物理平台(如冷原子模拟器或任意子激发集合)中的类似特征,可能有助于识别奇异相的出现,并更广泛地推进对物质工程的理解。