Suppr超能文献

通过深度网络推断雅可比场来控制各种机器人。

Controlling diverse robots by inferring Jacobian fields with deep networks.

作者信息

Li Sizhe Lester, Zhang Annan, Chen Boyuan, Matusik Hanna, Liu Chao, Rus Daniela, Sitzmann Vincent

机构信息

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Nature. 2025 Jul;643(8070):89-95. doi: 10.1038/s41586-025-09170-0. Epub 2025 Jun 25.

Abstract

Mirroring the complex structures and diverse functions of natural organisms is a long-standing challenge in robotics. Modern fabrication techniques have greatly expanded the feasible hardware, but using these systems requires control software to translate the desired motions into actuator commands. Conventional robots can easily be modelled as rigid links connected by joints, but it remains an open challenge to model and control biologically inspired robots that are often soft or made of several materials, lack sensing capabilities and may change their material properties with use. Here, we introduce a method that uses deep neural networks to map a video stream of a robot to its visuomotor Jacobian field (the sensitivity of all 3D points to the robot's actuators). Our method enables the control of robots from only a single camera, makes no assumptions about the robots' materials, actuation or sensing, and is trained without expert intervention by observing the execution of random commands. We demonstrate our method on a diverse set of robot manipulators that vary in actuation, materials, fabrication and cost. Our approach achieves accurate closed-loop control and recovers the causal dynamic structure of each robot. Because it enables robot control using a generic camera as the only sensor, we anticipate that our work will broaden the design space of robotic systems and serve as a starting point for lowering the barrier to robotic automation.

摘要

模仿自然生物体的复杂结构和多样功能是机器人技术中一项长期存在的挑战。现代制造技术极大地扩展了可行的硬件,但使用这些系统需要控制软件将期望的运动转换为致动器命令。传统机器人可以很容易地建模为通过关节连接的刚性连杆,但对那些通常柔软或由多种材料制成、缺乏传感能力且可能随使用而改变其材料特性的受生物启发的机器人进行建模和控制,仍然是一个悬而未决的挑战。在这里,我们介绍一种方法,该方法使用深度神经网络将机器人的视频流映射到其视觉运动雅可比场(所有三维点对机器人致动器的敏感度)。我们的方法仅通过单个摄像头就能实现对机器人的控制,不对机器人的材料、驱动或传感做任何假设,并且通过观察随机命令的执行在没有专家干预的情况下进行训练。我们在一系列在驱动、材料、制造和成本方面各不相同的机器人操纵器上展示了我们的方法。我们的方法实现了精确的闭环控制,并恢复了每个机器人的因果动态结构。由于它能够使用通用摄像头作为唯一传感器来实现机器人控制,我们预计我们的工作将拓宽机器人系统的设计空间,并成为降低机器人自动化障碍的起点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验