Nieto Estevan M, Lujan Edaena, Mendoza Crystal A, Arriaga Yazbel, Fierro Cecilia, Tran Tan, Chang Lin-Ching, Gurovich Alvaro N, Lum Peter S, Geed Shashwati
Department of Rehabilitation Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA.
Department of Occupational Therapy, The University of Texas at El Paso, El Paso, TX 79902, USA.
Bioengineering (Basel). 2025 Jun 4;12(6):615. doi: 10.3390/bioengineering12060615.
This case series investigates whether traditional machine learning (ML) and convolutional neural network (CNN) models trained on wrist-worn accelerometry data collected in a laboratory setting can accurately predict real-world functional hand use in individuals with chronic stroke. Participants (N = 4) with neuroimaging-confirmed chronic stroke completed matched activity scripts-comprising instrumental and basic activities of daily living-in-lab and at-home. Participants wore ActiGraph CenterPoint Insight watches on the impaired and unimpaired wrists; concurrent video recordings were collected in both environments. Frame-by-frame annotations of the video, guided by the FAABOS scale (functional, non-functional, unknown), served as the ground truth. The results revealed a consistent capacity-performance gap: participants used their impaired hand more in-lab than at-home, with the largest discrepancies in patients with moderate to severe impairment. Random forest ML models trained on in-lab accelerometry accurately classified at-home hand use, with the highest performance in mildly and severely impaired limbs (accuracy = 0.80-0.90) and relatively lower performance (accuracy = 0.62) in moderately impaired limbs. CNN models showed comparable accuracy to random forest classifiers. These pilot findings demonstrate the feasibility of using lab-trained ML models to monitor real-world hand use and identify emerging patterns of learned non-use-enabling timely, targeted interventions to promote recovery in outpatient stroke rehabilitation.
本病例系列研究了在实验室环境中收集的腕部佩戴式加速度计数据上训练的传统机器学习(ML)和卷积神经网络(CNN)模型能否准确预测慢性中风患者在现实世界中的手部功能使用情况。经神经影像学证实为慢性中风的参与者(N = 4)完成了在实验室和家中匹配的活动脚本,包括日常生活中的工具性和基本活动。参与者在受损和未受损的手腕上佩戴ActiGraph CenterPoint Insight手表;在两种环境中都收集了同步视频记录。视频的逐帧注释以FAABOS量表(功能性、非功能性、未知)为指导,作为地面真值。结果显示出一致的能力-表现差距:参与者在实验室中比在家中更多地使用受损手,中度至重度受损患者的差异最大。在实验室加速度计数据上训练的随机森林ML模型能够准确地对在家中的手部使用情况进行分类,在轻度和重度受损肢体中表现最佳(准确率 = 0.80 - 0.90),在中度受损肢体中表现相对较低(准确率 = 0.62)。CNN模型显示出与随机森林分类器相当的准确率。这些初步研究结果证明了使用实验室训练的ML模型监测现实世界中手部使用情况并识别新出现的习得性废用模式的可行性,从而能够及时进行有针对性的干预,以促进门诊中风康复中的恢复。