Suppr超能文献

利用综合分子建模和ADMET预测发现H5N1神经氨酸酶的新型天然抑制剂

Discovery of Novel Natural Inhibitors of H5N1 Neuraminidase Using Integrated Molecular Modeling and ADMET Prediction.

作者信息

Zekri Afaf, Ouassaf Mebarka, Khan Shafi Ullah, Rengasamy Kannan R R, Alhatlani Bader Y

机构信息

Group of Computational and Medicinal Chemistry, LMCE Laboratory, University of Biskra, BP 145, Biskra 07000, Algeria.

Inserm U1086 ANTICIPE (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Normandie University, Université de Caen Normandie, 14076 Caen, France.

出版信息

Bioengineering (Basel). 2025 Jun 7;12(6):622. doi: 10.3390/bioengineering12060622.

Abstract

The avian influenza virus, particularly the highly pathogenic H5N1 subtype, represents a significant public health threat due to its interspecies transmission potential and growing resistance to current antiviral therapies. To address this, the identification of novel and effective neuraminidase (NA) inhibitors is critical. In this study, an integrated in silico strategy was employed, beginning with the generation of an energy-optimized pharmacophore model (e-pharmacophore, ADDN) based on the reference inhibitor Zanamivir. A virtual screening of 47,781 natural compounds from the PubChem database was performed, followed by molecular docking validated through an enrichment assay. Promising hits were further evaluated via ADMET predictions, density functional theory (DFT) calculations to assess chemical reactivity, and molecular dynamics (MD) simulations to examine the stability of the ligand-protein complexes. Three lead compounds (C1: CID 102209473, C2: CID 85692821, and C3: CID 45379525) demonstrated strong binding affinity toward NA. Their ADMET profiles predicted favorable bioavailability and low toxicity. The DFT analyses indicated suitable chemical reactivity, particularly for C2 and C3. The MD simulations confirmed the structural stability of all three ligand-NA complexes, supported by robust and complementary intermolecular interactions. In contrast, Zanamivir exhibited limited hydrophobic interactions, compromising its binding stability within the active site. These findings offer a rational foundation for further experimental validation and the development of next-generation NA inhibitors derived from natural sources.

摘要

禽流感病毒,尤其是高致病性H5N1亚型,因其种间传播潜力和对当前抗病毒疗法的耐药性不断增强,对公共卫生构成了重大威胁。为了解决这一问题,鉴定新型有效的神经氨酸酶(NA)抑制剂至关重要。在本研究中,采用了一种综合的计算机模拟策略,首先基于参考抑制剂扎那米韦生成能量优化的药效团模型(电子药效团,ADDN)。对来自PubChem数据库的47781种天然化合物进行了虚拟筛选,随后通过富集分析验证分子对接。通过ADMET预测、密度泛函理论(DFT)计算以评估化学反应性以及分子动力学(MD)模拟以检查配体 - 蛋白质复合物的稳定性,对有前景的命中化合物进行了进一步评估。三种先导化合物(C1:CID 102209473,C2:CID 85692821,和C3:CID 45379525)对NA表现出强烈的结合亲和力。它们的ADMET特征预测具有良好的生物利用度和低毒性。DFT分析表明具有合适的化学反应性,特别是对于C2和C3。MD模拟证实了所有三种配体 - NA复合物的结构稳定性,这由强大且互补的分子间相互作用所支持。相比之下,扎那米韦表现出有限的疏水相互作用,损害了其在活性位点内的结合稳定性。这些发现为进一步的实验验证以及开发源自天然来源的下一代NA抑制剂提供了合理的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1209/12189692/56c7ef860ceb/bioengineering-12-00622-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验