Suppr超能文献

RARE:正确差事的正确算法;一种基于多模型机器学习的旅游路线和景点推荐方法。

RARE: right algorithm for the right errand; a multi-model machine learning-based approach for tourism routes and spots recommendation.

作者信息

Luo Ling

机构信息

Henan Vocational College of Information and Statistics, Zhengzhou, Henan, China.

出版信息

PeerJ Comput Sci. 2025 Apr 7;11:e2791. doi: 10.7717/peerj-cs.2791. eCollection 2025.

Abstract

With the globalization of the economy, tourism has emerged as a significant sector of entertainment and economic growth. Optimizing tourist attractions and routes has become crucial in modern travel planning, driven by the increasing demand for personalized recommendations. However, traditional static route-based algorithms struggle to adapt to the rapid expansion of the tourism industry, necessitating the development of dynamic, machine-learning-driven solutions. This study introduces a novel tourism recommendation system integrating multiple machine learning algorithms to provide personalized tourist spot and route recommendations. The proposed approach models the tourist map as a 2D grid of interconnected nodes, allowing for dynamic and adaptive recommendations. The framework employs long short-term memory (LSTM) for spot relevance prediction, support vector machine (SVM) for spot name classification, and depth first search (DFS) for optimal route generation. A k-means clustering approach is also utilized to designate a cluster leader (CL) responsible for managing node information within a specific zone. By inputting a simple textual query, tourists receive optimized travel routes tailored to their preferences, incorporating relevant attractions. The model is implemented in a Python-based environment and evaluated using an augmented Travel Recommendation dataset from Kaggle. Experimental results demonstrate the model's effectiveness in enhancing tourism planning and user experience, showcasing its potential for advancing intelligent tourism solutions.

摘要

随着经济全球化,旅游业已成为娱乐和经济增长的重要领域。在对个性化推荐的需求不断增加的推动下,优化旅游景点和路线在现代旅行规划中变得至关重要。然而,传统的基于静态路线的算法难以适应旅游业的快速扩张,因此需要开发动态的、机器学习驱动的解决方案。本研究引入了一种新颖的旅游推荐系统,该系统集成了多种机器学习算法,以提供个性化的旅游景点和路线推荐。所提出的方法将旅游地图建模为相互连接节点的二维网格,从而实现动态和自适应推荐。该框架采用长短期记忆网络(LSTM)进行景点相关性预测,支持向量机(SVM)进行景点名称分类,并使用深度优先搜索(DFS)生成最优路线。还利用k均值聚类方法指定一个聚类领导者(CL),负责管理特定区域内的节点信息。通过输入简单的文本查询,游客可以获得根据其偏好量身定制的优化旅行路线,并包含相关景点。该模型在基于Python的环境中实现,并使用来自Kaggle的增强型旅游推荐数据集进行评估。实验结果证明了该模型在提升旅游规划和用户体验方面的有效性,展示了其推进智能旅游解决方案的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e2d/12190522/b6b65dc0b58d/peerj-cs-11-2791-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验